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1 Thesis Introduction

This Ph.D. thesis has been written during my studies at the Aarhus School of
Business. It consists of four self-contained essays on valuation of interest rate
derivatives. In particular derivatives related to management of interest rate
risk are considered. Financial support to my Ph.D. studies has been provided
by ScanRate Financial Systems, a software company developing a commercial
software package, RIO, for fixed income and mortgage backed security analysis.
This connection is particularly reflected in the first two essays that deal with
aspects of the Danish mortgage backed security (MBS) market. The last two
essays concern the valuation and exercise of Bermudan swaptions. Their rela-
tion to the first two essays might not be obvious at first sight, but many fixed
rate mortgage backed securities can be seen as complicated Bermudan swaption
structures.

I would like to express my gratitude to my employer ScanRate Financial
Systems for giving me the opportunity to write this thesis. In particular thanks
to Svend Jakobsen, who has been working as an informal thesis advisor, and
to Bo Wase Pedersen who has patiently accepted delays in my work due to my
studies. Furthermore, thanks to Nicki S. Rasmussen, Sgren Willemann, Malene
S. Jensen, Bjarne Ngrgaard, and the rest of the ScanRate crew for help, insights
and good discussions. Thanks to the faculty, staff, and fellow Ph.D. students at
the Department of Finance, it has been a memorable time. Special thanks are
due to my advisor Tom Engsted. T also owe thanks to Torben G. Andersen and
Ph.D. students at Kellogg Graduate School of Business, Northwestern Univer-
sity for their kind hospitality and for an educational experience during my stay
in 2001. Finally, I am indebted to my wife Helle for her unconditional support.



2 English Summaries

2.1 Essay 1l

“Valuation of Path-Dependent Interest Rate Derivatives in a Finite Difference
Setup” was written as a part of an update of existing valuation models in the
RIO system. The numerical technique allows the prepayment models used in
the valuation of MBSs to include path-dependent explaining variables in the
prepayment function, which is important in order to capture the observed pre-
payment behavior of Danish mortgagors. We study and implement a finite
difference version of the augmented state variable approach proposed by Hull &
White (1993) that allows valuation of path-dependent securities. We apply the
method to a class of path-dependent interest rate derivatives and consider sev-
eral examples including mortgage backed securities and collateralized mortgage
obligations. The efficiency of the method is assessed in a comparative study
with Monte Carlo simulation and we find it to be faster for a similar accuracy.

2.2 Essay II

“Mortgage Choice - The Danish Case” is an extended version of an earlier
paper written with Svend Jakobsen. Starting from a detailed analysis of a
mortgage product recently introduced to the Danish mortgage market and a
comparison with more traditional Danish mortgage products, we analyze the
mortgage choice facing Danish borrowers. We argue that Adjustable-Rate Mort-
gages (ARM) with life time caps will combine the most attractive features from
straight ARMs and callable Fixed-Rate Mortgages (FRM). Furthermore, we find
the delivery option embedded in Danish mortgages to be an important feature,
which protects households from the risk of insolvency, by facilitating a closer
match between assets and liabilities in household portfolios.

2.3 Essay III

”Efficient Control Variates and Strategies for Bermudan Swaptions in a Libor
Market Model” concerns the problem of valuing Bermudan swaptions in a Libor
market model. In particular we consider various efficiency improvement tech-
niques for a Monte Carlo based valuation method. We suggest a simplification
of the Andersen (2000) exercise strategy and find it to be much more efficient.
Furthermore, we test a range of control variates for Bermudan swaptions us-
ing a sampling technique for American options proposed in Rasmussen (2002).
Application of these efficiency improvements in the Primal-Dual simulation al-
gorithm of Andersen & Broadie (2001), improves both upper and lower bounds
for the price estimates. For the Primal-Dual simulation algorithm we examine
the variance-bias trade-off between the numbers of outer and inner paths. Here
we find that the bias decreases at a rate that is approximately square root two
larger than the rate with which the variance decreases. Finally, we demonstrate



that stochastic volatility increases the expected losses from following the most
simple exercise strategy in Andersen (2000).

2.4 Essay IV

“On the suboptimality of single-factor exercise strategies for Bermudan swap-
tions”, deals with the cost of using recalibrated single-factor models to deter-
mine the exercise strategy for Bermudan swaptions in a multi-factor world. We
demonstrate that single-factor exercise strategies applied in a multi-factor world
only give rise to economically insignificant losses. Furthermore, we find that the
conditional model risk as defined in Longstaff, Santa-Clara & Schwartz (2001),
is statistically insignificant given the number of observations. Additional tests
using the Primal-Dual algorithm of Andersen & Broadie (2001) indicate that
losses found in Longstaff et al. (2001) cannot as claimed be ascribed to the
number of factors. Finally, we find that for valuation of Bermudan swaptions
with long exercise periods, the simple approach proposed in Andersen (2000) is
outperformed by the Least Square Monte Carlo method of Longstaff & Schwartz
(2001) and, surprisingly, also by the exercise strategies from the single-factor
models.

3 Danish Summaries

3.1 Essayl

“Prisfastsaettelse af stiafhsengige renteafledte derivater i en endelig differens
metode” blev skrevet som en del af en opdatering af en eksisterende prisfast-
sattelsesmodel i analysesystemet RIO. Den anvendte teknik tillader de modeller
for konverteringsrater, der anvendes i prisfastseettelsen af konverterbare obliga-
tioner, at anvende stiatheengige forklarende variable, hvilket har vist sig at vaere
vigtigt for at kunne forklare den observerede konverteringsadfeerd hos danske
lantagere.

Vi gennemgar og implementerer en metode introduceret af Hull & White
(1993) til prisfastseettelse af stiatheengige aktiver. Vi anvender metoden til
renteafledte aktiver, og illustrerer dens anvendelse pa blandt andet konvert-
erbare obligationer. Desuden undersgger vi metodens anvendelighed i et kom-
parativt studie med Monte Carlo simulation, og finder at den er hurtigere givet
samme ngjagtighed.

3.2 Essay II

“Valg af realkreditlan — det danske tilfeelde” er en udvidet udgave af en tidligere
artikel skrevet sammen med Svend Jakobsen. Med udgangspunkt i en detaljeret
analyse af et nyt realkreditprodukt pa det danske marked og en sammenligning
med traditionelle lanetyper, analyseres valget af realkreditlan i Danmark. Vi
argumenterer for, at variabelt forrentede lan med indbyggede renteloft svarende
til amortisationsperioden vil veere attraktive for mange af de lantagere, der i dag



veelger fast forrentede og almindelige rentetilpasningslan. Desuden argumenterer
vi for, at den option, som lantager har pa at indfri lanet til kursveerdien ved at
opkgbe obligationer i markedet, er serdeles vigtig, idet den beskytter lantagerne
mod teknisk insolvens, ved at sikre en teaettere sammenhaeng mellem aktiver og
passiver.

3.3 Essay III

”Efficiente kontrolvariate og strategier for Bermuda swaptioner i en Libor-marked
model”. Dette studie omhandler prisfastsaettelsen af Bermuda swaptioner i en
Libor-marked model. Specielt undersgger vi forskellige teknikker til at gge ef-
fektiviteten i en Monte Carlo baseret prisfastseettelsesmetode. Vi forslar en
simplificering af en ”exercise”-strategi anvendt i Andersen (2000), og demon-
strerer at den er mere efficient. Desuden undersgges en maengde kontrolvariate
for Bermuda swaptioner ved hjelp af en sampling teknik foreslédet i Rasmussen
(2002). Anvendelsen af disse forbedringer i en primal-dual simulationsalgoritme
af Andersen & Broadie (2001) forbedrer bade gvre og nedre graenser for prises-
timaterne. For primal-dual simulationsalgoritmen undersgger vi en varians-bias
afvejning mellem antallet af indre og ydre stier. Her finder vi, at bias aftager
med en rate, der er ca. kvadratrod to stgrre end den rate, hvormed variansen
aftager. Endelig demonstreres det, at stokastisk volatilitet gger de forventede
tab ved at fplge den simpleste af de strategier, der er foreslaet i Andersen (2000).

3.4 Essay IV

“Om suboptimaliteten af en-faktor indfrielsesstrategier for Bermuda swaptioner”,
omhandler de forventede tab fra anvendelsen rekalibrerede en-faktor modeller
til at bestemme indfrielsesstrategien for Bermuda swaptioner i en fler-faktor
verden. Vi viser, at en-faktor indfrielsesstrategier anvendt i en fler-faktor ver-
den kun giver anledning til gkonomisk insignifikante tab. Desuden viser vi, at
den "betingede model risiko” defineret i Longstaff et al. (2001) er statistisk in-
signifikant givet antallet af observationer. Yderligere test med primal-dual algo-
ritmen af Andersen & Broadie (2001) indikerer at tabene rapporteret i Longstaff
et al. (2001) ikke som haevdet kan tilskrives antallet af faktorer. Endelig finder
vi at ved prisfastsaettelsen af Bermuda swaptioner med lange indfrielsesperioder,
bliver den simple metode foresldet i Andersen (2000) overgéet af Least-square
Monte Carlo metoden af Longstaff & Schwartz (2001), men mere overraskende
ogsé af indfrielsesstrategierne fra en-faktor modellerne.
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Abstract

In this paper we study and implement a finite difference version of the augmented
state variable approach proposed by Hull & White (1993) that allows for path-
dependent securities. We apply the method to a class of path-dependent interest
rate derivatives and consider several examples including mortgage backed securities
and collateralized mortgage obligations. The efficiency of the method is assessed in
a comparative study with Monte Carlo simulation and we find it to be faster for a
similar accuracy.

JEL Codes: G13, G12, C19

Keywords: Path-dependent Options; Finite Difference; Mortgage Backed Securities

1 Introduction

In Hull & White (1993) a method to price path-dependent securities in trees is demon-
strated to be an efficient way of handling particular path-dependent securities. The main
idea is to augment the state space with additional state variables to represent movements
in the past. In Wilmott, Dewynne & Howison (1993) the same technique is applied but
in a more general finite differences framework to value exotic options like look-back and
Asian options.

In this paper we first summarize the method for interest rate derivatives in a finite
difference setup. The method allows us to handle most common features in fixed income
products including particular types of path-dependencies as well as American features.

Secondly we apply the technique to other types of path-dependent securities, and we
illustrate that the valuation of collateralized mortgage obligations under rational pre-
payments can be done in a single backward run, as opposed to the two-step procedure
proposed in McConnell & Singh (1994) that employs both finite difference and Monte
Carlo techniques.

The numerical results presented in Hull & White (1993) indicate that the method is
faster and just as accurate as Monte Carlo simulation and that the method is not par-
ticularly sensitive to the density of the discretized augmented state space. However, our
numerical results show that there are in fact large differences in the density of the aug-
mented state space needed in order for the method to converge, but it is still at least as

*The author would like to thank Tom Engsted, Svend Jakobsen, Jesper Lund, Kristian Miltersen, Rolf
Poulsen and Nicki Rasmussen for helpful comments. This research was supported by ScanRate Financial
Systems.



fast as standard Monte Carlo for similar accuracy. The examples we consider are a mort-
gage backed security (MBS) with a path-dependent prepayment function, collateralized
mortgage obligations (CMO) such as the Interest Only (I0), the Principal Only (PO)
and Sequential Pay tranches, and, finally, a capped amortizing Adjustable Rate Mortgage
(ARM) with a coupon that is settled as an average of historical interest rates.

In section 2 we go through the model framework. Section 3 describes the numerical
implementation while section 4 contains applications of the method. Finally, we make our
conclusion.

2 The Model Setup

The following exposition is based primarily on Wilmott et al. (1993), and the main dif-
ference is that we derive the fundamental partial differential equation in an interest rate
model, whereas Wilmott et al. (1993) work in a Black-Scholes world.

2.1 Interest Rate Dynamics

We work in a one-factor term structure setup, with models for the instantaneous short
rate r; that can be represented by the following SDE,

dry = p(re, t)dt 4+ o(ry, t)dWr,

where 1 and o denote drift- and volatility functions that satisfy the usual conditions. W;
is a one-dimensional Wiener-process. This setup covers many of the most commonly used
single factor models, but the technique is also applicable to multi-factor models.

Let V denote the value of an interest rate contingent claim, that is dependent on
the history of the short rate. Assume that this dependency can be summarized in a
z-dimensional state-vector A € R?, in the following way

A= /t f(rs, s)ds.
0

To keep notation simple we assume that z = 1. However, it is possible to have z > 1.
With these specifications the value V (¢, 7, A;) of the claim is Markov with respect to the
information generated by the triple (¢, 7, A;). In other words, we assume that the value
of the path-dependent security is given by the real valued function V (¢, r, A;) defined on
Ry X D (ry) x D(A¢). Here D (-) denotes the domain for a given variable. This domain
will in general depend on the specific term structure model and the definition of the
state-vector. Before continuing notice that

dAt = f('f't, t)dt,

which means that A; is a state variable of finite variation, and does not add further noise
to the system. In particular this means that we do not need to worry about additional
risk premia.

2.2 The Partial Differential Equation

A standard arbitrage argument leads to the fundamental partial differential equation for
the security (the derivation can be found in appendix A.1 for completeness).

ov o?V
oV (tr, Ay) = o + %U(Ttat)Za—T?
oV oV
+ (u(re,t) — A(re, t)o(re, 1)) oy + f(Ttvt)a—At' (1)



Here A (1¢,t) denotes the market price of interest rate risk. A terminal condition must be
specified in order to determine a single solution to the problem, so let this be given by

V (T, TT,AT) = h (T, T’T,AT) .

With the appropriate boundary conditions, these equations will define the value function
and must in general be solved by numerical methods. Observe that the last term in
equation (1) is due to the state variable and will be zero for path-independent securities,
leaving the usual term-structure equation.

2.3 Discrete Sampling

When the state-variable is updated at discrete time points, the term g—Xt (r,t) in the
PDE found above will disappear, as dA; = f (r4,t) dt = 0 between sampling dates. The
simplification facilitates the solution compared to the continuous sampling as discrete
updates of the state-variable introduce a type of jump condition. Note that in the case of
continuous sampling greater care should be taken when implementing this method, but
we will not get into the details here, but refer the reader to Forsyth, Vetzal & Zvan (2000)
for a rigorous treatment of the numerical aspects.

Let ® denote the time points where the state variable is updated. By definition
discretely sampled state variables remain constant between the sampling dates, and on a
sampling date they should be updated through a so-called update rule

Ati =U (ti;rt“ Ati71) .

A no arbitrage argument (Wilmott et al. (1993)) will show that a corresponding jump
condition will be

V(t;

7

’rtﬂAti—l) =V (t,j»/l"t“U (ti7Ati717’l"ti)) ; i € P. (2)

In order to provide some intuition for the jump conditions due to discrete sampling of
the state variable, consider the following example. Assume we know the current value of
the state variable, and that time approaches the next sampling time. The uncertainty
regarding the new value of the state variable will diminish and immediately before the
fixing time we will know the new value. As the realization of the price process should
be continuous when no payments are made to either side of the contract, the values
immediately before and after the update should be equal.

It is worth noting that a clever choice of state variable and update rule is important
for optimal use of this method. As we shall see later it is sometimes possible to exploit
particular properties in a given security or the update rule to reduce the dimensionality
of the solution function.

2.4 Discrete Dividends

If the security pays discrete coupons an arbitrage argument leads to jump conditions. Let
¥ denote the set of dates at which the security pays the coupons D; (¢;,74,, At,). Following
standard notation let ¢; and ¢; denote the time immediately before and after the i'th
payment is made, respectively. This means that the ¢'th jump condition due to coupons
is

V(t_ TtivAti) =V (t;r,’f't,i,Ati) + D; (tivrt“Ati) , 1€ Ww. (3)

70

2.5 Amortization of Principal

Another feature we must be able to incorporate is the amortization of the remaining
principal P;. If ¢; is the time where Z;, units of the principal are repaid, we have

V (t;,rti,Ptf,At,i) = V (tj,rti,Pt_f — Zt“Ati> +Zt,i-



If the amortization scheme depends on the interest rate movements it will induce a
special kind of path-dependency, but in most cases these value functions have a similarity
solution without this path-dependency. As demonstrated below, securities where the
amortization Z;, is linear in the remaining principal, support this similarity reduction.

If the amortization schedule Z;, is defined as a fraction 0 (¢, 7, A¢,) of remaining prin-
cipal, i.e. Zy, = 0 (t;,re,, As,) - Pti_’ then we have the following jump condition

V(70 P A ) =V (8700, (1= 0 (71, A)) - Py A ) +0 (b7, Ad) - P

For fixed income securities that are homogeneous of first degree in the remaining principal
P!, we can apply the similarity reduction

Vv (t;artwpt,—aAti) = (1 - g(tiarthti)) -V (t;rartiaPtTaAti> +0 (rti’tivAti) ' Pt.‘
which implies
Vv (ﬁi Tt; s 17Ati) = (1 — H(tiﬂ"ti,Ati)) -V (ﬁj,?"t“ 17At,i) + 0 (ti,T‘ti,Ati) -1 (4)

7

This facilitates the solution as we shall find a function of one variable less. We just need
to incorporate a version of this jump condition whenever principal is redeemed. Basically,
we always measure the value in terms of 100% remaining principal of the security.

3 The Numerical Solution

3.1 Transformation of the PDE

We apply a standard transformation of the interest rate state space (see e.g. Duffie (1996),
Stanton & Wallace (1999) or James & Webber (2000)). Define,

1
= ’ > 07
x(r) T T
with inverse 1
r(z) = $7 7w > 0.
T

There are mainly two reasons that we want to transform the state space for the spot rate.
First, the transformation of the PDE (1) allows us to work with the solution on a bounded
space. Secondly, it enables us to increase the number of points in the most relevant part
of the state space using the constant 7.

Let u(z,t) =V (r(z),t) . We now transform the PDE (1) into an PDE in « defined on
the bounded state space 0 to 1.

ov(r,t) _ Ou(zt)dx _ -
or o dr  Or _um(l—l—ﬂr)2 T

0%V (r,t) 9 1 0%u (x,t) 5 30u(z,1)

B T v

Substituting into (1) we obtain the following PDE for w in z, t where subscripts are short
hand notation for partial derivative

oV , 02V oV

0 = 5 + 50(re,t) an? + e, t) or, Vir
= u;+ %a(r(m), t)2 (7r2x4um + 27r2x3uz) + a(r(x),t) (—7rx2um) — ur(z)
= w + 30(r(z),t)*m° 2 Uy, + m2® (o(r(z),t)’m2 — ir(z),1)) uy — ur(z)

ug (x,t) + B (2, t) Uge (2, ) + @ (z,1) uy (x,t) — r(x)u(z,t), (5)

I Conditions for similarity reductions must also be satisfied on the boundary as well as by the terminal
function.



with terminal condition

u (T, ZET,AT) =h (T,T’(:L'T),AT) .

3.1.1 Boundary conditions.

In general we need to specify boundary conditions if we are using implicit schemes to
solve parabolic PDE’s. However, as described in Vetzal (1998) for interest rate models
with mean reversion and constant standard deviation, the PDE above behaves more like
a hyperbolic PDE due to the size of the convection term, even though it is formally
parabolic. Hence, it will not only be unnecessary to use boundary conditions, it will
actually be most efficient to avoid specifying them.

Unfortunately not many interesting models have constant standard deviation, so we
might need to use something else. However, another boundary condition arises naturally,
as also noted by Vetzal (1998), by the fact that the —r (z) u term causes exponential decay,
thereby driving u and its derivatives to zero. This means that in these cases appropriate
boundary conditions could be e.g. v =0, u; = 0 or u;, = 0 on the upper boundary in r
space (lower boundary in x space).

3.2 The Finite Difference Schemes

The PDE in (1) will in general have to be solved numerically, and in this section we
describe the finite difference solution used.

Crank-Nicolson and implicit schemes are unconditionally stable, allowing us to match
any cash flow, sampling, or decision date. Furthermore, as the Crank-Nicolson scheme is
second-order accurate in time, we are able to take much larger steps in the time direction.
However, if the terminal condition is not differentiable in the state-variable, the conditions
for the Crank-Nicolson scheme are violated, which often causes oscillations in the solution.
This can often be avoided by using the pure implicit scheme for the first couple of steps,
or by smoothening the payoff function (see e.g. Tavella & Randall (2000)).

Therefore, we will use what is sometimes referred to as the ”delta” method, which
is basically a convex combination of pure explicit and implicit schemes, with the Crank-
Nicolson scheme as the special case with equal weight. This implementation facilitates
shifts between different finite difference schemes, by changing the weight w.

On the boundary we use inside approximations that are second order in space, when
applying the implied boundary conditions. We refer to Appendix A.2 for further details.

3.3 Implementing an Augmented State-Variable

To fix some notation let Vs’fk, denote the value of the security at time ¢,,, when the short
rate is r, and where k denotes level of the state variable. We denote the discretization
of the augmented state variable by A = {4y, ..., Ax}. At all sampling times, where the
augmented state variable is updated using the update scheme, the value must satisfy the
jump condition in (2)

\% (tj_,’l’tj,A ) =V (tj_,’l"tj,U (tjthj,Aj,l)) =V (tj—,th,Aj) .

j—1
However, the update function U does not necessarily take values in A, so we will not know
the exact value of V (t;‘, Tt Aj). The basic idea in this method is to approximate it by
interpolating the future values at known levels of A.

With a view to this interpolation, define the mapping function £* (A) : R — {0, ..., K'}
by

Ap- <A< Ap1a.

That is, the mapping picks the index of the highest level of the state variable that is still

less than or equal to the value A, assuming that the discretization of the state space has
been done such that this is a well-defined mapping. Notice that if V' is non-linear in the



Ak+1 o L4 V(Ak+1)
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Ak) [ J V(Ak;)

Ap_1 @ o V(Ar_1)
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Figure 1: Illustration of the interpolation in the augmented state space.

state variable, we get a biased estimate using linear interpolation. E.g. if V is a convex
function of A, then the estimate is too high.

We use either linear- or polynomial interpolation of order 22. Algorithms can be found
in Press, Flannery, Teukolsky & Vetterling (1989), and written in a pseudo notation we
get

Vg =int (A (A1 A, A b (VIR LV VIR ).

It is possible to make the number of levels of the augmented state space time and
state-dependent in order to minimize calculation time, as there is no need to consider
levels of the state variable that are not feasible. In situations where the state variable
is monotonincally increasing or decreasing, a simple example could be to use the current
value as either upper or lower bound of the augmented state space.

4 Applications

The technique can be applied to a wide range of path-dependent securities. The essential
part is to make a clever choice of state variables and update rules. As a complicated
example Dewynne & Wilmott (n.d.) show how to value a trend based option like a
”Five-times-up-and-out” using this approach.

In the following numerical analysis we use the Cox-Ingersoll-Ross model,

w(re,t) =k (n—ry), o(r,t) =oyr, A t) = /\CIR\/E/U
with parameters as given in table 1.

s |n o
0.

K |>\CIR|
[03]008]012]0 |

Table 1: Parameters in the CIR model

4.1 Mortgage Backed Securities

A standard mortgage backed security(MBS) is a fixed rate mortgage with an embedded
option that allows the borrower to repay the remaining principal at par at any time
during the life of the mortgage. This means that when refinancing rates fall, borrowers
prepay their loans by taking up new loans at the prevailing market rate. Any reasonable
pricing model for MBS’s is designed to incorporate what is known as the burnout effect,

2Qther interpolation schemes such as cubic splines and rational interpolation have been tested without
improvements.



namely that borrowers most inclined to prepay leave the mortgage pool, causing future
prepayment rates to decline ceteris paribus.

This heterogeneity among borrowers can be modelled in basically two ways, which
we will denote explicit and implicit burnout. Implicit modelling of burn out consists of
summarizing the historical interest and prepayment behavior in state variables which enter
directly into the prepayment function. This is also termed a path-dependent prepayment
function. Early contributions in this direction were made by Schwartz & Torous (1989)
and Richard & Roll (1989). Examples of explicit modelling of burnout can be found in
Jakobsen (1992) and Stanton (1995). By regarding a bond in a large and heterogeneous
mortgage pool as a portfolio of homogeneous sub pools, each having a path-independent
prepayment function, they demonstrate that changes in the mixture of borrowers will
induce a burnout pattern very similar to that of the implicit models.

When it comes to valuing MBS, Monte Carlo simulation has by some been considered
superior to backward induction techniques as Monte Carlo simulation allows the prepay-
ment model to combine the two approaches, but as shown here so do recombining lattice
methods. On the other hand, Monte Carlo simulation has the serious flaw, namely that
it is unable, or at least unsuitable to handle MBSs under rational prepayment behavior.
Especially the fact that American or Bermudan option pricing is very hard to do by Monte
Carlo simulation, means that we cannot use this approach to compute the optimal prepay-
ment strategy. Furthermore, as mentioned earlier, the finite difference approach facilitates
the task of valuing options on MBS’s or CMOs as we just use backward induction.

As mentioned above we need to define the state variable and the update rule in order
to make use of the method. One variable that has been applied in many prepayment
models in various forms is a so called pool factor B;, that measures the current remaining
principal relative to the originally scheduled. If ; denotes the conditional prepayment
rate, i.e. the fraction of the remaining borrowers that prepay at time ¢;, we have that

B;=TU_,(1-6;), By=1.
The update rule U is given by
Bj = U(t,’l“t,Bj_l) = Bj_l . (1 — Hj),

Assume that the conditional prepayment rate (CPR) 6; = f (tj, Tt Bj,l) is a function
f of some explaining variables, one of them being the pool factor, making the prepayment
model path-dependent. This means that at a term of notice®, where the borrowers have
to decide whether to prepay or not, we apply the jump condition

V(t_,Tt, ijl) = 9j -1+ (1 — 9]) -V (ﬁ+,7“t7 U (t,?“t, ijl)) s (6)
measured in terms of principal at time ¢~ .

4.1.1 MBS: An example

As an example we consider the pricing of a 20-year annuity bond, with a fixed 8% coupon
and quarterly payments, where the borrowers’ behavior is described by the very simplified
but path-dependent prepayment function for the conditional prepayment rate,

03 (11, By1) = min (1430 B; 1) - (Coupon — (ry, +1%)) " ,100%) .

3 Almost all mortgages have a term of notice, but in these examples we ignore these features, such that
prepayment decisions are taken at the term date.
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Figure 2: Illustration of the path-dependent prepayment function. CPR denotes the
conditional prepayment rate and B the path-dependen burnout factor.

Table 2 illustrates the convergence of the value of the MBS for different values of the
short rate as we increase the density of the discrete augmented state space using first
linear and then quadratic interpolation. Monte Carlo estimates based on 40.000 paths
using antithetic variates as variance reduction (a total of 80.000 paths) are given below.
The right column shows the differences between the finite difference solution and the MC
estimates measured in basis points. For three out of four levels of the short rate we cannot
at a 95% significance level reject the hypotehesis that the MC and PDE values are equal,
when the number of states is high enough. However for all practical applications the
differences are not significant as they are way inside bid-ask spreads, which are at least 10
bps. These results also confirm the conclusions in Hull & White (1993), namely that the
quadratic interpolation seems to improve the method when K is low. The table also shows
computation times and it is obvious that the method is quite efficient compared to this
particular MC implementation. The interesting thing here is not whether the numbers are
exactly equal, as we know that in the limit both methods will give us the correct values.
The basic point is that the PDE is fully able to handle this path dependency; there is no
need to simulate in this case.

4.2 Collateralized Mortgage Obligations

CMOs are constructed by allocating the payments from the underlying collateral (usually
MBS) into different new securities (called tranches). Depending on the redistribution of
the payments, these tranches can have characteristics that are indeed very different from
those of the collateral. In practice all kinds of CMOs are created to fit investor preferences.

McConnell & Singh (1994) propose a two-step procedure to value CMOs under rational
prepayments. The rational exercise of the prepayment option precludes MC as a feasible
solution procedure regarding the prepayment decisions, so they find the optimal exercise
boundary by finite difference. In the second step they use MC to work forward in time
distributing the cash flows using the optimal exercise boundary found in step one as a
prepayment function. In relation to the augmented state space approach, McConnell &
Singh (1994) claim that it is necessary to include a state variable for each tranche making
the approach technically unfeasible. However, if the allocation of the cash flow is based
on the remaining debt alone, we do not need more than one state variable per sub pool
of borrowers. We do not need a state variable for each tranche.

We now show that some of the most widely used CMO structures can be priced using



Table 2: Convergence of the PDE solution for the Mortgage Backed Security

Linear PDE PDE-MC

No. Comp. Short Rate (bps)

Aug Time 2% 4.8% 8% 12% 2% 4.8% 8% 12%
3 1 101.484 101.023 96.570 88.949 2 44 46 35
5 1 101.476  100.810 96.317  88.767 1 23 21 16
7 2 101.471  100.728 96.231 88.707 0 15 12 10
9 3 101.469 100.690 96.191 88.679 0 11 8 8
11 3 101.468 100.666 96.169 88.664 0 9 6 6
13 3 101.467 100.651 96.155 88.654 0 7 5 5
15 4 101.466 100.642 96.146 88.648 0 6 4 4
17 4 101.466 100.636 96.140 88.643 0 5 3 4
19 5 101.465 100.630 96.135 88.640 0 5 3 4
21 5 101.465 100.627 96.131 88.638 0 5 2 3
31 8 101.464 100.616 96.122 88.631 0 4 1 3
41 9 101.464 100.612 96.119 88.629 0 3 1 3
61 14 101.464 100.609 96.116 88.627 0 3 1 2
81 18 101.464 100.608 96.115 88.626 0 3 1 2

MC 598 101.47 100.58 96.11 88.60

Std.Dev 0.00 0.01 0.02 0.02 0.2 1.2 2.1 2.0
Quadratic PDE PDE-MC

No. Comp. Short Rate (bps)

Aug. Time 2% 4.8% 8% 12% 2%  4.8% 8% 12%
3 1 101.475 100.695 96.169 88.664 1 11 6 6
5 2 101.460 100.512 96.023 88.563 | -1 -7 -9 -4
7 2 101.458 100.544 96.064 88.592 | -1 -4 -5 -1
9 3 101.460 100.572 96.088 88.609 | -1 -1 -2 1
11 4 101.462 100.587 96.101 88.618 | -1 1 -1 1
13 5 101.462 100.596 96.108 88.623 0 2 0 2
15 6 101.463 100.603 96.113 88.626 0 2 0 2
17 6 101.463 100.606 96.115 88.627 0 2 1 2
19 7 101.463 100.608 96.117 88.628 0 3 1 3
21 7 101.463 100.609 96.118 88.629 0 3 1 3
31 11 101.463 100.610 96.118 88.629 0 3 1 3
41 14 101.464 100.610 96.117 88.628 0 3 1 2
61 21 101.464 100.608 96.116 88.627 0 3 1 2
81 27 101.464 100.608 96.115 88.626 0 3 1 2

MC 598 101.47 100.58 96.11 88.60

Std.dev 0.00 0.01 0.02 0.02 0.2 1.2 2.1 2.0

This table illustrates the convergence of the PDE approach using a Linear and Qudratic
interpolation scheme. No. Aug denotes the number of spatial grid points in the augmented
state-space and Comp. Time is the calculation time in seconds. MC denotes the Monte-Carlo
estimates for various levels of initial short rate and Std.Dev. is the standard deviation.
PDE-MC is the difference between PDE and the MC estimates measured in basis points. In the
PDE implementation a Crank-Nicolson scheme was used with 80 spatial grid points and 24

steps per year.



the augmented state variable approach. There are only a few limitations. For example,
we will not be able to calculate measures such as weighted average life (WAL), as the
state price distribution in the augmented state space is unknown.

4.2.1 Mortgage Strips

One of the most natural ways to split the total cash flow received from the collateral, is
into principal and interest payments. These mortgage strips are also known as Interest
Ounly (IO) and Principal Only (IO). The holder of an IO receives all interest payments
from the collateral, while the PO holders receive the scheduled as well as unscheduled
repayment on the principal. It is clear that the value of the IO and the PO together
should equal that of the collateral, i.e.

VC — VIO + VPO.
If we use this fact to rewrite equation (6), it follows that

Vc(ti,T‘t,Bj_ﬂ = Gj 14 (1 - 93) Ve (tJr,Tt, U(t,’/‘t,Bj_l))

which implies

VIO m, Bj )+ VPO, Bia) = 0,21+ (1—6;)- VIO (t7,r, U (t,m1, Bj 1))
+(1=0;)- VPO (tT,r, U (t, 14, Bj—1))

The PO receives all repayments, and the 1O looses the future interest corresponding to
the prepaid principal. Hence, the jump equations due to prepayment will look like

VIO(ti,'I"t,Bj,1> = (1 — 9]) . VIO (t+,7't, U(t,rt,ijl)) 5
VPO(ti,Tt,ijl) = 9]' -1 + (1 - GJ) . VPO (t+,’l"t, U(t,Tt,ijl)) .

From these it is clear that both these tranches are mildly path-dependent if the pre-
payment function is path-independent. Hence, the mortgage strips can be evaluated in
exactly the same way as the collateral.

4.2.2 Sequential Pay Tranches

As mentioned in section (4.1) there are several reasonable measures for the historical
interest rate and prepayment behavior, but the pool factor definition chosen above has
the additional advantage that it can also be used to value CMO structures, where we
can not apply the similarity reduction. The sequential pay tranches are examples of such
structures, as the value of the tranches are not linear in remaining debt.

An example Consider two tranches T7 and T, on a collateral of 100 units of the MBS
from before. Tranche 1 receives the first Wi percent of the collateral, and when all

CMO Nominal Coupon
Collateral | 100 C
Tranche A | W;-100 4
Tranche B | W5-100 Cy

Table 3: Example of Sequential Pay CMO

principal in tranche 77 has been redeemed, tranche T5 starts receiving principal. Both
tranches receive interest on the remaining principal. Notice that if C; > Cy there will
be an interest deficit after the first installment on the principal, and an interest excess if
C < Cs. In these cases issuers often add a residual class - a so called Z-bond, but we will

10



not go into these details. The number of CMO constructions is almost infinite and only
the inventiveness seems to set the limit.

To keep things simple let us assume that tranche T receives the first 60% of the
principal and that tranche T5 gets the rest, but that they both pay the same interest as
the collateral, i.e. Wi = 60%, W5 = 40%, and C = C = Cy = 8%.

20 Year Annuity Bond, Coupon 8% Constant CPR =5%

8
|
7,
6,
5 HA (60%)
OB (40%)
@ Collateral

<=7" Collateral
B (40%)
A (60%)

Figure 3: Illustration of cash flows for the tranches, given the cashflow from the collateral.

Notice that this construction has no similarity reduction as the amortization is not
linear in the principal. Here the use of the augmented state variable is crucial, even if
the prepayment function is path-independent. By using the pool factor defined above
as state variable, we will be able to decide how much the individual tranches should
receive at a given time for a given spot rate. To find the nominal value of the remaining
debt we multiply the pool factor with the scheduled remaining principal in case of no
prepayments. Denote the scheduled remaining principal in case of no prepayments by Pj
and the actual remaining principal after the j'th payment P;, both measured in percent
of initial principal. Then by definition of the pool factor,

P; = B, - P;.

Given the nominal value we can allocate the cash flow to the tranches in accordance with
the definition as we do when we go forward during the MC simulation. At time j we let
Z; denote the total repayment, T'Z; the total repayment since time 0, I J’ and Zj’j denote
the interest and repayment for the i’th tranche, and I is the number of trances.

Zj = Pja-Fj
TZ; = 1-P
; +
ro= ((Sweera)aw) i
m=1
. i—1 ] B
7z = (Zj—ZZJ’-”>/\P;1, iy 1
m=1
I = P_,-C, i=1,.,1

11



Given these expressions we can now state the following jump condition for the value of
tranche ¢ at time j

Vit e, Bja) =V (6, By) + Zi+ 1, i=1,..,1

Numerical Results for Sequential Tranches As for the numerical results for the
sequential tranches reported in Tables 4 and 5, there are at least three things worth
mentioning. First, the differences between the MC results and the PDE approach are
small when the number of state levels K is high enough. Secondly, however, as opposed
to the conclusions in Hull & White (1993) and the results for the collateral, the tranches
are quite sensitive with regard to the number of state levels. We need much more than 6
levels in order to obtain reasonable results. Thirdly, we also see that for small values of
K the quadratic interpolation scheme performs worse than the linear scheme. The two
latter points are not that surprising though, as the value function is not smooth in the
state variable.

4.3 Average Rate Capped Amortizing ARM

We examine a security traded in the Danish mortgage market named BoligX. The con-
struction of the security is quite non-standard for several reasons. The BoligX loan is a
5-year adjustable rate mortgage ARM that can be issued with or without an embedded
5-year cap. Usually a cap on an ARM is paid for separately, but the BoligX loan is a
genuine pass-through in the sense that payments from the borrowers are paid directly to
the mortgage holders, and the cap with strike & is paid for through a premium rate p.

There are quarterly payments which are settled in pairs twice a year. The size of the
payments are based on the borrower having an adjustable rate annuity mortgage with
m payments, typically 80 or 120 corresponding to 20- or 30-year. The coupon on the
underlying mortgage is reset twice a year as a day arithmetic average of the 6-month
Cibor rate over a prespecified 10 days fixing period.

This means that at the n/th fixing time, the next two payments are equal to the pay-
ment received from an annuity with m — 2n periods and a coupon rate that is C,,. On top
of the average will be a coupon premium to pay for the cap. Due to this construction of the
security there will be repayment on the principal, and this repayment increases/decreases
as interest rates decrease/increase.

Let IV denote the number of fixing periods and {s}l, - 57110} the set of dates in the n’th
fixing period. Furthermore, let t} and 2 denote payment times for the payments settled
at time s1°. Hence, the n’th coupon rate will be given as

Cp =min (A, + p, k),

where A,, = 1—10 Z}il r (sﬁl) . The size of the payments settled in period n can then be

found from the standard annuity formula

C, m
2

Y, =P n=1 ..,

" 1— (1 + Cn)*(m*Q(’“*l)) ’

where m — 2 (n — 1) is the number of remaining payments and P,, the remaining principal
outstanding at fixing time n.

In order to model the settlement of the coupon rate as an average of previous interest
rates, we let the state variable A be the discretely sampled average of the short rate . The
update rule in the case of a discretely sampled average as a state variable, can be written
as

A(sh) = U (shor (s1) A (s57)) = 2 (s8) + =L a sl

Another non-standard feature of the BoligX loan is that the sampling takes place
before the actual accruement period. But as the payments are known at the fixing time

12



Table 4: Convergence of the PDE solution for Tranche A

Linear PDE PDE-MC

No. Comp. Short Rate (bps)

Aug. Time 2% 4.8% 8% 12% 2%  4.8% 8% 12%
3 3 61.326 69.465 66.295 58.456 47 924 848 494
5 3 60.931 63.081 60.962 55.451 7 285 315 193
7 4 60.885 61.382 59.248  54.469 2 115 143 95
9 5 60.872  60.744 58.501 54.032 1 51 68 51
11 6 60.862 60.346 58.062 53.776 0 12 25 26
13 6 60.866 60.424 57.981 53.662 1 19 16 14
15 8 60.868 60.479 58.019 53.649 1 25 20 13
17 8 60.867 60.453 58.016 53.649 1 22 20 13
19 10 60.865 60.376  57.965 53.631 0 15 15 11
21 10 60.862 60.285 57.897 53.603 0 5 8 8
31 15 60.861 60.267 57.853 53.565 0 4 4 5
41 19 60.861 60.257 57.835 53.553 0 3 2 3
61 29 60.861 60.251 57.821 53.543 0 2 0 2
81 38 60.861 60.248 57.815 53.540 0 2 0 2

MC 574 60.86 60.23 57.82 53.52

Std.Dev 0.00 0.01 0.01 0.01 0.0 0.5 1.2 1.2
Quadratic PDE PDE-MC

No. Comp. Short Rate (bps)

Aug. Time 2% 4.8% 8% 12% 2%  4.8% 8% 12%
3 2 59.862 31.239 21.175 23.957 [ -100 -2899 -3664 -2956
5 4 59.415 43.296 48.234 49.676 | -145 -1693  -958 -384
7 5 60.885 61.382 59.248  54.469 2 115 143 95
9 7 60.872 60.744 58.501 54.032 1 51 68 51
11 8 60.862 60.346 58.062 53.776 0 12 25 26
13 10 60.866 60.424 57.981 53.662 1 19 16 14
15 11 60.868 60.479 58.019 53.649 1 25 20 13
17 12 60.867 60.453 58.016 53.649 1 22 20 13
19 13 60.865 60.376 57.965 53.631 0 15 15 11
21 15 60.862 60.285 57.897 53.603 0 5 8 8
31 21 60.861 60.267 57.853  53.565 0 4 4 b)
41 28 60.861 60.257 57.835 53.553 0 3 2 3
61 42 60.861 60.251 57.821 53.543 0 2 0 2
81 54 60.861 60.248 57.815 53.540 0 2 0 2

MC 574 60.86 60.23 57.82 53.52

Std.dev 0.00 0.01 0.01 0.01 0.0 0.5 1.2 1.2

This table illustrates the convergence of the PDE approach using a Linear and Qudratic

interpolation scheme. No. Aug denotes the number of spatial grid points in the augmented
state-space and Comp. Time is the calculation time in seconds. MC denotes the Monte-Carlo
estimates for various levels of initial short rate and Std.Dev. is the standard deviation.
PDE-MC is the difference between PDE and the MC estimates measured in basis points. In the
PDE implementation a Crank-Nicolson scheme was used with 80 spatial grid points and 24
steps per year.
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Table 5: Convergence of the PDE solution for Tranche B

Linear PDE PDE-MC

No. Comp. Short Rate (bps)

Aug. Time 2% 4.8% 8% 12% 2%  48% 8% 12%
3 3 40.115  30.847 29.542  29.967 | -49 -950  -875 -H12
5 3 40.517  37.326 34.971 33.045 -9 =302 -332  -204
7 4 40.566 39.083 36.740 34.067 -4 -127  -155  -102
9 5 40.582  39.755 37.519 34.528 -2 -60 =77 -56
11 6 40.594  40.177  37.980 34.799 -1 -17 -31 -29
13 6 40.591 40.115 38.075 34.924 -2 -24 -22 -16
15 8 40.590 40.071 38.047 34.943 -2 -28 -25 -14
17 8 40.592  40.105 38.057 34.949 -1 -25 -24 -13
19 10 40.595 40.190 38.115 34.971 -1 -16 -18 -11
21 10 40.598 40.286 38.187  35.002 -1 -6 -11 -8
31 15 40.600 40.319 38.244  35.050 -1 -3 -5 -3
41 19 40.601  40.337 38.267 35.065 -1 -1 -3 -2
61 29 40.601  40.348 38.287 35.079 0 0 -1 -1
81 38 40.602 40.354 38.295 35.083 0 0 0 0

MC 574 40.61 40.35 38.29 35.08

Std.Dev 0.00 0.01 0.01 0.01 0.1 0.8 1.0 0.9
Quadratic PDE PDE-MC
No. Comp. Short Rate (bps)

Aug. Time 2% 4.8% 8% 12% 2%  4.8% 8% 12%
3 2 41.588 69.304 74.925 64.667 | 98 2895 3663 2958
5 4 42.185 59.347 49.621 40.072 | 158 1900 1133 499
7 5 40.613  39.634 37.205 34.385 1 =72 -109 -70
9 7 40.613 40.111 37.815 34.728 1 -24 -48 -36
11 8 40.616  40.422 38.181 34.934 1 7 -11 -15
13 10 40.607 40.292 38.218 35.019 0 -6 -7 -6
15 11 40.603  40.205 38.153 35.013 0 -15 -14 -7
17 12 40.602  40.208 38.138  35.002 0 -14 -16 -8
19 13 40.603 40.271 38.177 35.012 0 -8 -12 -7
21 15 40.605 40.351 38.237 35.034 0 0 -6 -5
31 21 40.604 40.348 38.263 35.061 0 0 -3 -2
41 28 40.603 40.350 38.276  35.070 0 0 -2 -1
61 42 40.602 40.352 38.289  35.080 0 0 0 0
81 54 40.602 40.355 38.296  35.084 0 0 0 0
MC 574 40.61 40.35 38.29 35.08

Std.Dev 0.00 0.01 0.01 0.01 0.1 0.8 1.0 0.9

This table illustrates the convergence of the PDE approach using a Linear and Qudratic
interpolation scheme. No. Aug denotes the number of spatial grid points in the augmented
state-space and Comp. Time is the calculation time in seconds. MC denotes the Monte-Carlo
estimates for various levels of initial short rate and Std.Dev. is the standard deviation.
PDE-MC is the difference between PDE and the MC estimates measured in basis points. In the
PDE implementation a Crank-Nicolson scheme was used with 80 spatial grid points and 24

steps per year.
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510 the time s present value of the payments settled is just Y, (B (57110, t}l) + B (s}lot%)) ,
where B (t,T) denotes the time ¢ value of a discount bond maturing at time 7T

A part of these two payments is amortized principal, and hence we will need to incor-
porate this into a jump condition. It can easily be shown that the amortization rate 6 due
to the first two payments of an annuity bond with an initial nominal of P,, m —2 (n — 1)

payments and coupon C,, is

Yn . (1 + Cn)—(m—Q(n—l)) . (2 + CTL)
0, = Iz .

We are now ready to state the jump conditions for the sampling dates in period n

V(sh™r(sh), A(sh 1) = V(s r(s), A(s))), G=1,...,9
At the last sampling date in period n we also add the present value of the two payments
and apply the jump condition due to the armortized principal.
V0 () A () = Yo (Bt + B, 2)

n n o r’n

+(1-6,)-V (57110+,7‘ (57110) VA (87110)) ,

At the very last payment date the investor also receives the remaining principal, while
the intermediary issues a new BoligX loan on behalf of the borrower.

Numerical Results BoligX The premium p in the example is 20 bps and the cap rate
k18 7.7%. In table 6 we see that only the out the money value is more than two standard
deviations away from the MC value. As there are no differences in the performance of the
linear or quadratic interpolation scheme when K > 5, there is no reason to use anything
other than linear interpolation.

5 Conclusions

In this paper we have analyzed a numerical method that efficiently allows valuation of
a class of path-dependent interest rate derivatives in a finite difference setup. We have
focused on mortgage backed security valuation in particular and we show that this method
is able to handle both the American feature but also path-dependencies present in MBS’s.
Furthermore, the method is at least as efficient as standard Monte Carlo techniques for
similar precision, even when we consider 20- or 30-year products.

There are of course limitations to the application of this method due to the curse of
dimensionality. If the dimension of the augmented state vector is high, we will not only
have to make use of a high dimensional interpolation scheme, but the number of points in
the discretized augmented state space will increase exponentially with the dimension. For
example, suppose we have a mortgage pool that consists of say 4 sub pools or more with
different prepayment behavior. The valuation of a sequential pay CMO, would require us
to use a 4-dimensional state vector to summarize all possible combinations of remaining
debt or equivalently burnout in the sub pools.

At last we mention that this method can also be used to model and access the value of
the delivery options embedded in for example Danish mortgage backed bonds. A delivery
option gives the borrower the right to buy back her own loan from the mortgage pool at
market value. The presence of this option means that we almost never see prepayments
below par. In order to model this option we will need to know the market value of the
mortgage at each future time and state. That is, we need not only know the values of the
loans in individual sub pools but also their relative share of the total mortgage pool.
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Table 6: Convergence of the PDE solution for the BoligX bond

Linear PDE PDE-MC

No. Comp. Short Rate (bps)

Aug. Time 2% 4.8% 8% 12% | 2%  48% 8% 12%
3 3 98.637 97.438 94.827 89.093 | -23 -37 =37 -17
5 3 98.675 97.501 94.871 89.116 | -19 -31 33 -14
7 4 98.722 97.570 94917 89.139 | -15 -24 =28 -12
9 4 98.758 97.627 94.958 89.161 | -11 -18 =24 -10
11 4 98.783 97.627 94.993 89.179 | -9 -14 -21 -8
13 6 98.801 97.698 95.022 89.193 | -7 -11 -18 -7
15 6 98.815 97.719 95.046 89.205 | -5 -9 -15 -5
21 8 98.841 97.761 95.098 89.232 | -3 -5 -10 -3
31 11 98.861 97.794 95.147 89.256 | -1 -2 -5 0
41 14 98.873 97.813 95.179 89.272 0 0 -2 1
61 20 98.882 97.827 95.204 89.284 1 2 1 3
81 25 98.882 97.828 95.205 89.285 1 2 1 3
101 32 98.882 97.828 95.205 89.285 1 2 1 3

MC 475 98.87 97.81 95.20 89.26
std.dev 0.008 0.011 0.013 0.011 0.8 1.1 1.3 1.1
Quadratic PDE PDE-MC
No. Comp. Short Rate (bps)

Aug. Time 2% 4.8% 8% 12% 2% 48% 8% 12%

3 3 99.356  98.948 98.111 96.586 | 49 114 291 733
5 4 98.675 97.501 94.871 89.116 | -19  -31 -33 -14
7 4 98.722 97.570 94917 89.139 | -15  -24  -28  -12
9 5 98.758 97.627 94.958 89.161 | -11  -18  -24  -10
11 6 98.783 97.668 94.993 89.179 | -9 -4 21 -8
13 7 98.801 97.698 95.022 89.193 | -7 -11 -18 -7
15 8 98.815 97.719 95.046 89.205 | -5 -9 -15 -5
21 10 98.841 97.761 95.098 89.232 | -3 -5 -10 -3
31 14 98.861 97.794 95.147 89.256 | -1 -2 -5 0
41 19 98.873 97.813 95.179 89.272 | 0 0 -2 1
61 27 98.882  97.827 95.204 89.284 1 2 1 3
81 36 98.882 97.828 95.205 89.285 1 2 1 3
101 44 98.882 97.828 95.205 89.285 1 2 1 3
MC 475 98.87 97.81 95.20 89.26
std.dev 0.008 0.011 0.013 0.011 | 0.8 1.1 1.3 11

This table illustrates the convergence of the PDE approach using a Linear and Qudratic
interpolation scheme. No. Aug denotes the number of spatial grid points in the augmented
state-space and Comp. Time is the calculation time in seconds. MC denotes the Monte-Carlo
estimates for various levels of initial short rate and Std.Dev. is the standard deviation.
PDE-MC is the difference between PDE and the MC estimates measured in basis points. In the
PDE implementation a Crank-Nicolson scheme was used with 80 spatial grid points and 24
steps per year.
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A Appendix
A.1 The Derivation of the Fundamental PDE

If we assume that the value function V(¢,r:, A;) satisfies the usual regularities we can
apply Ito’s lemma to find the dynamics for the value of the claim
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Let now X; = F(r¢,t) denote the price of another security depending on the short rate

e.g. a zero coupon bond of maturity 7', governed by the following SDE
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the change in value of the portfolio is deterministic. Hence the drift should be equal to

the short rate,
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As the securities were arbitrarily chosen, the equation cannot depend on them, hence
leaving the right hand side equal to some function g(r,t) depending only on time and the
short rate. A standard trick is to write this as a function of the drift and the volatility
for some function A(r,t) which is denoted market price of risk. Define A (r¢,t) such that
g(re, t) = — (u(re, t) — A(re, t)o(rs.t)), leading to

2
(%—‘f +30(re, )2 55 = Vir + g—Xf(mt))
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A.2 The Finite Difference Schemes

We will use the ”"delta” method in order facilitate shifts between various finite difference
schemes, thus letting
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Notice, that setting w; equal to 1 corresponds to a pure implicit scheme, 0 to a pure
explicit scheme and w; equal to % is the Crank-Nicolson scheme. To simplify the notation
let

B(z,t) = 2o°na?,
a(z,t) = ma®(o’nz—f),
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) = —_,
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Substituting the finite difference approximations into the PDE (5) and simplifying, we
get the following equation for an inner point (n, s) of the grid
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where
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he = v (B+3ad,).

For the two boundary equations we will use implied boundary conditions, but we will
not be able to use a central derivative to approximate u,, and u,. Furthermore, as we
do not wish to spoil the second order of the Crank-Nicholson scheme, by using a simple
one sided difference approximation, which is only accurate to order O (d,). Instead we
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will use the following one sided approximations when x is at the boundaries, as they are

accurate of order O ((51)2) On the upper boundary zg41
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Similar approximations on the lower boundary z lead to
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These equations can be expressed as follows. Notice, that the one sided, but second

order, approximations come with a (very) small price tag, namely that the system of
equations that we end up with, is not a truly tri-diagonal system.
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However, we will only need two additional row operations in order to obtain a true
tri-diagonal system. Then we can use standard routines to solve the system.

A.3 The Monte Carlo Setup

The simulation setup used in this paper is based on the excellent paper on efficient sim-
ulation in non-linear one-factor interest rate models by Andersen (1996). We apply the
extended version of the second order Milstein discretization scheme and the antithetic
variate technique for variance reduction. Admittedly, there are several techniques that
could possibly reduce the variance of the Monte Carlo estimates further.
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Abstract

In this paper we analyze the mortgage choice faced by Danish borrow-
ers. Based on an analysis of the most popular Danish mortgage products,
we argue that Adjustable-Rate Mortgages (ARM) with life time caps will
combine the most attractive features from straight ARMs and callable
Fixed-Rate Mortgages (FRM). Furthermore, we find the delivery option
embedded in Danish mortgages to be an important feature, which pro-
tects households from the risk of insolvency by facilitating a closer match
between assets and liabilities in the household portfolio.
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1 Introduction

The Danish market for mortgage backed bonds is more than 200 years old, but
the basic principles have remained the same!. It is characterized by its relative
simplicity and a high degree of efficiency. The so-called mortgage credit institu-
tions fund loans issued to borrowers by selling an equal amount of bonds in the
markets. A strict balance principle in the legislation requires the mortgage credit
institutions to have a very close match between the payments on the loans and
the bonds issued, which basically means that all issues are pass-throughs. Fur-
thermore, independent of the borrowers creditworthiness, the maximum loan-
to-value LTV limits are 80% for residential property and 60% for corporate
property. In effect, Danish mortgage backed bonds are considered highly-secure
investment grade securities with ratings from Moody’s ranging from Aaa to Aa2.
In fact, in the 200-year history not a single investor has received less than the
full payment and not a single mortgage credit institution has gone bankrupt.

*This paper is an extension of a previous working paper written with Svend Jakobsen and
published in Danish in Finans/Invest. The author acknowledges comments from Tom Engsted
and Svend Jakobsen that have significantly improved this paper. This research was supported
by ScanRate Financial Systems.

I More detailed information can be found in Mortgage Financing in Denmark (1999).



Over the years changes in the mortgage legislation as well as tax-laws have
also affected the maturity and amortization profiles of the loans issued. The
vast majority of the mortgages are still callable annuity bonds with maturities
of 30-, 20- or 10-years. However, several loan types have been, and still are,
available e.g. Inflation-indexed Fixed-Rate Mortgages (IFRM).

In 1989 an amendment to the existing mortgage law allowed new mortgage
credit institutions to be created, and an effect of this has been a significant
increase in competition. The close connection between bonds and loan profiles
makes bonds from different mortgage credit institutions very close substitutes,
which ultimately forces mortgage credit institutions to make costs and markups
the primary parameters in a very competitive market. However, an increasingly
important parameter has been the development of new mortgage products in
order to maintain (and attract) customers. In our opinion the increased compe-
tition and the focus on market shares have lead the mortgage credit institutions
to develop mortgage products that appear attractive at prevailing market con-
ditions, focusing primarily on low initial payments.

The mortgage choice is the single most important financial decision most
households are going to make. As discussed in e.g. Campbell & Cocco (2002),
this decision requires considerations that are on the frontier of finance research,
including uncertainty in interest rates and inflation, risky labor income, bor-
rowing constraints, and illiquid assets.

In the US mortgage choice literature the mobility of the borrower is a
key issue. A consistent finding is that mobile and wealthy borrowers as well
as short term housing tenures tend to prefer short-term mortgages (see e.g.
Dhillon, Schilling & Sirmans (1987), Brueckner & Follain (1988), Aadu & Sir-
mans (1995)). A closely related part of the US literature argues that points and
coupons are ways to make borrowers reveal private information regarding their
mobility (see e.g. Leroy (1996), Stanton & Wallace (1998)).

In a very recent study Campbell & Cocco (2002) implement a life-cycle
model with interest rate and income risk. Furthermore, the model includes
mobility for non-financial reasons, a variety of mortgage contracts including
second mortgages, and the wealth effect of the property value. Their numerical
results support the findings that low probability of moving, large houses and
high risk aversion, increase the preferences for FRMs. Their main conclusion
is that inflation-indexed FRMs are preferred for household risk management.
However, this effect is decreasing in inflation uncertainty. Also interestingly,
they find that hybrid ARMs with caps and floors are more attractive than both
straight ARMs and nominal FRMs.

However, there is one reason in particular as to why we cannot apply the
conclusions from the US case in Denmark. Danish mortgage backed bonds have
an additional option embedded, often denoted the delivery option (or buy back
option). This option allows a mortgagor to cancel his loan by buying back bonds
at market value, effectively cashing in the capital gain. This means that no
prepayments are observed whenever prices are below par, but most importantly
the delivery option alleviates the mobility issue known from the US and hence
makes most US mortgage choice studies less applicable in the Danish case.

As we shall see, the delivery option sustains a better match between the
mortgagor’s assets and liabilities, and therefore we often hear the opposite advice
in Denmark: borrowers that are more likely to move should issue FRMs close to
par. The reason is that if they are likely to move, they should be willing to pay



the higher coupon in a FRM for a short while, in return for protection against
increasing interest rates just prior to a house sale.

The literature on mortgage choice in Denmark is rather limited consider-
ing the long history and no single study has taken all the elements considered
in Campbell & Cocco (2002) into consideration. Recent research in Nielsen &
Poulsen (2002a) and Nielsen & Poulsen (2002b) gives a partial explanation. Fo-
cusing on the interest rate risk using an advanced two-factor stochastic program-
ming approach, they are able to support the prepayment behavior historically
observed in Denmark, including both prepayments and deliveries. However,
they do not consider early redemption for non-financial reasons (death, divorce,
job relocation), and therefore favor straight ARMs to FRMs in their implemen-
tation, as the delivery option is less worth in a straight ARM due to the low
interest rate sensitivity. Finally, they do not consider ARMs with caps.

Indexed linked FRMs have been available in Denmark for decades, but have
gradually become less popular. This is interesting considering the conclusions
made by Campbell & Cocco (2002), but could well be related to the relative low
inflation uncertainty in the Euro area, however we are not aware of any studies
of this subject.

In this paper we examine a hybrid ARM, Bolig-X (BLX), recently introduced
in the Danish mortgage market and compare it to existing mortgage types.
Furthermore, we suggest modifications that in our opinion would make it even
more attractive. Even though we do not apply a formal utility based analysis,
our conclusion is not far from the one in Campbell & Cocco (2002). Given that
mortgagors are risk averse, it must be important to ensure a reasonable match
between assets and liabilities in the household portfolio. A main point in this
paper is that the Bolig-X loans with cap? are surprisingly reminiscent of callable
FRMs. Both loan types protect the mortgagor from increases in interest rates
and the mortgage payments can be reduced when interest rates decline. The
existing Bolig-X loans are, however, too short to provide the mortgagor with
a sufficient protection against increases in interest rates, but if the maturity of
the loan and hence the cap is increased to e.g. 30 years, then these bonds would
from a mortgagor’s view appear at least as attractive as traditional callable
FRMs.

The paper is organized as follows. We start out by giving a short introduction
to delivery options as well as the most common existing mortgage products in
Denmark. Then we go through the calculation technique behind the Bolig-X
loans, and discuss the valuation technique and their price-yield relationship.
With model calculations as benchmark we compare Bolig-X loans with straight
ARMs, ARMs with a connected guarantee, as well as callable FRMs. After that
we estimate the payments that mortgagors have to pay in order to have a life
time cap on the coupon. Finally, we complete the treatment with a discussion.
In all calculations it is assumed that mortgagors amortize their debt over 30
years.

2If it is not explictly expressed in the text, the term Bolig-X loan will refer to the type
with a cap.



2 The Delivery Option

The so-called delivery option is a feature embedded in most Danish mortgages.
It allows a mortgagor to buy back his "own" bonds in the market and deliver
these bonds to the mortgage credit institution that will cancel his old loan. Basi-
cally all mortgages on the Danish mortgage market are pass-through securities,
and as a result of this close connection between bonds and loans the delivery
option is easily implemented in practice. The delivery option has mostly been
discussed in relation to dynamic debt management strategies that use the deliv-
ery option to switch to a higher coupon when interest rates have gone up. The
purpose of this strategy is to reduce debt and to get higher interest payments
which are tax deductable (see e.g. Jakobsen (1992)). Furthermore, the new
mortgage provides them with a more valuable option if interest rates are going
to decrease again.

However, what many Danish households fail to appreciate is that the delivery
option also ensures a much closer match between assets and liabilities. This is
particularly important if households are likely to redeem their mortgage for non-
financial reasons, as they will have to realize any mismatch between the value
of their property and their debt. Hence, the delivery option is more worth to
mortgagors which are more likely to move.

3 Loan types

3.1 Callable Fixed Rate Mortgages (FRM)

Callable FRMs still account for the majority of the mortgage market in Den-
mark. Typically they have maturities of 10, 20, or 30 year and are callable at
par. The bond series are open for issues for a period of three years. Loans can
be issued as either cash- or bond loans.

Contrary to the US case mortgagors are not directly presented with a menu
of coupons and points. If a mortgagor decides to take out a callable FRM e.g.
a callable annuity, with a certain coupon and maturity, the mortgage institu-
tion sells a corresponding bond on the stock exchange and just transfers the
proceeds to the mortgagor. However, given the combination of amortization
profile, coupon, maturity and call option the price of this bond will only by
chance trade at par. Furthermore, due to tax-reasons the mortgage credit in-
stitutions do not issue bonds trading above par, so the proceeds from a bond
sale will generally be lower than the initial principal. This means that a higher
principal value is required to obtain a given revenue from the sale. This capital
loss works basically in the same way as the coupons and points system in the
US.

However, a capital loss can be made tax-deductable in Denmark by issuing a
so called cash-loan. On a cash-loan the coupon rate is the yield-to-maturity on
the day the bond is issued, which is higher than the coupon on the corresponding
bond loan (cash loans are only meaningful when prices are below par). This
way the capital loss is transferred into tax-deductable interests and therefore
capital gains from redeeming cash-loans are liable to taxation.
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Figure 1: This figure illustrates the nominal outstanding of non-callable bullet
bonds used to fund the ARMs in the Danish mortgage market. The figure
illustrates how a new 11 year bullet bond is issued when the current 1-year bond
matures. The bond series are aggregated based on their maturity indicated in
the legend.

3.2 Adjustable Rate Mortgages (ARM)

As interest rates have declined during the last decade Adjustable Rate Mort-
gages (ARMs) have gained a footing on the Danish mortgage market and now
account for a large fraction of new issues. The mortgage credit institution
RD’s Flexloans (Flexlan) are probably the most well-known ARMs, but similar
products are offered by other mortgage credit institutions, including Nykredit,
Unikredit, DLR and BRF. Most loans are so called F1-loans, which are funded
with 1 year bullet bonds. The advantage of these loans is that the mortgagor
refinances his mortgage at the currently low 1 year rate (plus the contribution
fee). The disadvantage is that the mortgagor only knows the mortgage payments
one year ahead. Figure 1 shows the rapid increase in the nominal amounts of
the underlying non-callable bullet bonds sold to finance the ARMs.

These loans are issued as cash loans, but we refer to Tgrnes-Hansen (1997)
for a thorough introduction.

3.3 Bolig-X mortgages (BXL)

In April 2000 a new adjustable rate product Bolig-X was introduced by Totalkredit.
These loans are issued as 5 year bond loans where the coupon is reset twice a
year to the 6 Month CIBOR rate?. Until now 6 different Bolig-X bond series

3CIBOR rates are published daily by the Danish Central Bank (Danmarks Nationalbank)
on the basis of quotes of interbank loan rates from currently 8 Danish banks. Rates of 1, 2,
3,4,5,6,9 and 12 Months loans are published.



have been issued, but in this paper we focus on the original three since these are
more liquid; 5.156% CIBOR 122c 2005 (abbreviated BX-05 in this paper) is a
straight ARM, where the coupon and hence mortgage rate follows the 6 Month
CIBOR rate. In the other two bonds 5.356% CIBOR 122¢ 2005 (BXL-05) and
2007 (BXL-07) the mortgagors pay CIBOR plus a yield spread of 20 basis points
(0.2%) for an embedded cap, which guarantees that the coupon rate cannot ex-

ceed 7.7% at any time. An overview of the three bond series is given in table
1.

Name | Coupon | Expiry Price Amount
Oct. 1, 2001 | DKK mil.
BX-05 5.156% | Jan—01-2005 100.50* 451
BXL-05 | 5.356% | Jan-01-2005 100.67 5,763
BXL-07 | 5.356% | Jan-01-2007 100.06 6,702

* Last price Sep 13, 2001

Table 1: Overview Bolig-X loans, October 2001

The Bolig-X loan without cap is a simple way to construct an F1-like mort-
gage and is very much like the ARMs known from the US mortgage market. At
first sight the Bolig-X loan with cap corresponds closely to an F1l-loan with an
interest rate guarantee as offered by other mortgage credit institutions. How-
ever, where the interest rate guaranties offered by the other mortgage credit
institutions have failed to take on?, almost all of Totalkredit’s customers have
chosen to pay for an embedded cap. This is seen in figure 2.

The success of these loans is likely to be the main reason why Totalkredit
has won market shares during the last couple of years.

The Bolig-X bonds have quarterly term dates but the coupon rate is settled
twice a year. The coupon rate for the terms October and January is determined
as the average of 6 Month CIBOR during the 10 first trade dates in May while
the coupon rate for term dates April and July is set during the 10 first trade
dates in November. The coupon rate is therefore known approximately 1.5
month before the term period begins, and as such the coupon rate for 1, 2 or 3
terms could be known depending on the trade date.

The mortgagor repays the loan as an annuity with a computational maturity
of e.g. 30 years. An example of a possible cash flow is given in table 2.

With a principal of 1 mil. DKK, a coupon rate of 5.36% and 120 terms to
maturity we get a quarterly payment of on term date Jan, 02 of 16,801 DKK.
April 2002 the coupon rate is set at 4.3% and with 119 terms left and a remaining
principal of 996,599 the payment is 14.883 etc. As is evident a lower coupon
results in a higher repayment and vice versa.

April/July 2003 and 2004 illustrate periods where CIBOR plus 20 bp is
higher than the cap rate and hence the coupon is set at 7.7%. In January 2005
the bond matures and the mortgagor has to repay the remaining principal of
962.489° DKK. In order to make this payment the mortgagor will have to issue

4To our knowledge no information is published regarding the interest rate guaranties and
our assessment is based on conversations with employees at the mortgage institutions.

5 After some year there could be very different maturities in the BoligX loans as old loans
with e.g. 15 years to maturity are to be refinanced in the same bond series as new 30 year
mortgages. This will influence the repayment profile and in particular the value of the bonds.
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Figure 2: This figure shows the issues in the three bonds series from April 2000
until April 2002. It is obvious that the two series BXL 05 and BLX 07 with the
embedded cap are far more popular among mortgagors than the BX 05 with
cap.

a new bond at the prevailing level of interest rates.

The Bolig-X loan can be seen as a package consisting of an adjustable rate
bond and a sold cap on 6 month CIBOR with strike 7.7%, and with a stochastic
notional following the amortized at the same rate as the underlying bond. A
cap is a standardized financial contract which for a given principal pays the
difference between the current interest rate and a fixed rate. Prices of caps
written on CIBOR are quoted on a regular basis by the major banks and are
available on Reuters and Bloomberg terminals. There are, however, problems
by using this information directly:

e The cap in the Bolig-X bonds is written on a principal that is reduced in
line with the mortgagors repayments. The repayments are unknown in ad-
vance and vary systematically with the development in the interest rates.
Increasing interest rates means that the notional of the cap decreases less
and hence makes the cap more valuable.

e The cap is written on a 10 day average of CIBOR, which reduces the
volatility and hence the caps value relative to a cap written on CIBOR.

e The cap is written on a 6 month rate but with quarterly terms, the strike
rate is 7.7% and not equal to the strike rate on the quoted caps, and
finally the underlying coupon rate is determined 1.5 month before the
term date in contrast to the quoted caps which are settled at CIBOR at
the beginning of each term.

We assess that a minimum and maximun maturity within the individual bond series will be
necessary.



Remaining
Term Date Coupon Principal Interest Repayment Payment
Jan, 02 5.36% 996,599 13,400 3,401 16,801
Apr, 02 4.30% 992,429 10,713 4,169 14,883
Jul, 02 4.30% 988,215 10,669 4,214 14,883
Oct, 02 5.80% 984,950 14,329 3,265 17,594
Jan, 03 5.80% 981,638 14,282 3,312 17,594
Apr, 03 7.70% 979,264 18,897 2,374 21,271
Jul, 03 7.70% 976,844 18,851 2,420 21,271
Oct, 03 6.40% 973,725 15,630 3,119 18,748
Jan, 04 6.40% 970,557 15,580 3,169 18,748
Apr, 04 7.70% 967,998 18,683 2,559 21,242
Jul, 04 7.70% 965,390 18,634 2,608 21,242
Oct, 04 7.20% 962,489 17,377 2,901 20,278
Jan, 05 7.20% 0 17,325 962,489 979,814

Table 2: Possible cashflow stream for a Bolig-X loan 2005 with a principal of 1
mill. DKK and a coupon rate cap of 7.7 pct.

e The cap is out of the money and hence less liquid.

These problems make it more difficult to apply simple models to accurately
value the cap. For the calculations in this paper we have chosen to use a term
structure model which allows us to take these issues into account.

4 Valuation of the mortgage products

4.1 Interest rate model and numerical implementation

The pricing model used in the following analysis is a one-factor Cox, Ingersoll
& Ross (1985) term structure model. The short rate r; dynamics under the risk
neutral measure is given by the diffusion

dry =k (t) (1 (t) — 7¢) dt + o () /redWE.

In the examples we have chosen to use constant parameters with a current short
rate of 3.7% to facilitate replication of the results. The parameters used here
was a mean reversion level k = 20%, volatility parameter o = 0.06 and the long
term level p = 7%. These parameters provide a reasonable fit to the Danish swap
curve and ATM caps on October 1th, 2001 even though we tend to overvalue
the long caps. The choice of the CIR model was made primarily to have some
degree of skew in the implied volatilities of caps.

We apply the implementation of a Crank-Nicholson finite-difference solution
described in Svenstrup (2002) to solve the fundamental PDE
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where V (t,7¢, A;) denotes the time ¢ value of an interest rate dependent claim
when the short rate is ;. A; denotes an additional state variable used during



the fixing periods to capture the path dependency of the running average of the
6 month CIBOR. Notice, as the state variable A; is updated discretely the last
term in the PDE is actually replaced by additional jump conditions.

The implementation takes into account that the coupons are fixed 2-8 months
before they are actually paid and hence we only add the present value of the
coupons at each fixing date. During the fixing periods we also keep track of the
additional state variable representing the accumulated average, but notice that
this is not necessary between fixing periods as the state variable is the 6 Month
CIBOR on the first fixing day in each period.

The idea with the chosen model is solely to give a quantitative estimate of
the effects of the various input parameters. In practice the model applied would
have time dependent parameters in order to obtain a closer fit to the observed
term structures of interest rates and volatilities.

4.2 A prepayment model for FRMs

The prepayment model used in the valuation of the FRMs is a version of the
ScanRate and Reuters DMBS model based on prepayment data for the period
July 1997 to July 2001 (see Pedersen (2000)).

The standard references for a Danish prepayment model are Jakobsen (1992)
and Jakobsen (1995). Basically all prepayment models used in the Danish mar-
ket are variations and minor extensions of the required gain prepayment model
developed in Jakobsen (1992). This is a hazard-rate based model for the condi-
tional prepayment rate A. It stipulates that mortgage holders require a certain
net present value gain from prepayment in order to make it worth the effort.
Furthermore, the model utilizes information of the borrower composition in a
bond series, published by the mortgage credit institutions, to create sub-pools
of mortgage holders based on the size of their debt etc.

According to the model the fraction of mortgagors in sub-pool ¢« who prepay
at time ¢ can be estimated with

Ai (1) =@ (B fi (wi; i),

where ® denotes the standard normal distribution, 3, a; are paramter vectors,
fi a set of basis functions and x; a set of covariates. The vector of covariates
x; includes the net present vaue gain from prepaying, the time to maturity and
a path-dependent burn-out factor. For further details on Danish prepayment
models and the valuation of callable FRMs, see Jakobsen & Svenstrup (1999)
and Jakobsen & Rasmussen (1999).

In the valuation of the FRMs we use the additional state-variable in equation
(1) to model the path-dependency due to the so-called burn-out effect. Notice
that contrary to the US case (see e.g. Schwartz & Torous (1989), Richard &
Roll (1989)), we do not include mobility related covariates in the prepayment
model.

5 Bolig-X model prices

We now consider the valuation results for the Bolig-X loans. Figure 3 illustrates
the model prices on October 1th, 2001 for the three Bolig-X bonds as a function



of different levels of the yield curve®. Initially the yield premium and cap rate
of the bonds are adjusted so as to make the bonds trade close to par. For high
interest levels the prices decrease for the two bonds with the cap and the effect
is most pronounced for the one with the longest maturity BXL-07.
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Figure 3: The model prices on October 1th-2001 for Totalkredits Bolig-X bonds
at different interest rate levels. The vertical line indicates the initial level of the
6 month CIBOR.

A closer examination shows some interesting effects. On October, 1th the
coupon rate for the Jan, 2nd term is fixed at 5.16% for BX-2005. This means
that the price is above 100 at low interest rate levels and below for high interest
rates. If the interest rates are low the prices of BXL-05/07 with caps are higher
than the BX-05 without cap. This is due to a 20 basis points yield premium
used to pay for the cap, while the value of the cap is almost zero at low rates.
BXL-07 has the yield premium for two years longer than the BXL-05 and hence
has a marginally higher price than BXIL-05. On the other hand, if the interest
rate level is sufficiently high the effect of the cap dominates and the price on
BXL-07 is lower than BXL-05. In our calibration of the model to market data
on October 1th, 2001, the short rate is 3.7% corresponding to a 6 Month CIBOR
on 3.97%. This level of interest rates is marked by the vertical line in the figure.
The model gives approximately the same prices for BXL-05 and BXL-07 while
the market as shown in table 1 assigns the BXL-05 the highest value.

6 Bolig-X and Adjustable Rate Mortgages

The Bolig-X loan without cap has properties that are very similar to an ARM
of the F1 type. As an experiment, let us assume that Totalkredit had chosen to

6We have chosen to shift the short rate in the CIR model and maintain the distance between
the short rate and its long term level. This will result in almost parallel shifts in the entire
yield curve. The first coupon rate January,1th 2002 is fixed at the actual coupon rate of
5.16/5.36%. The subsequent rates vary as determined by the term structure model.

10
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Figure 4: Source: Reuters, The Association of Danish Mortgage Banks

issue BF1 loans without cap where the coupon rate in the beginning of December
every year was set equal to the cash loan rate that RD obtains at the auction
where they refinance their F1 loans. At the same time assume it is possible
for BF'1 loans to be sold at price 100. The effect would be that BF1 mortgage
holders would have the exact same payment profile before and after tax as the
RD mortgage holder with an F1 loan.

On the other hand it will not be certain that BF1 bonds would actually be
sold at par. There is a small tax free profit due to appreciation for investors in
F1 bonds which are typically sold below par. The tax free profit could result in
a smaller payments on F1 loans relative to BF1 loans.

In addition the investors would have to assess the liquidity of the BF1 bond
relative to an investment where they roll over F1 bonds. A lower liquidity would
depress the price on the BF1 bonds.

However, Totalkredit has chosen not to use the F1 coupon but instead 6
month CIBOR as index. As is evident from figure 4 there is a very high corre-
lation between these two rates. On average the 6 month CIBOR is a bit lower
than the F1 rate.

CIBOR is defined as a reference rate for loans to a Prime Bank on unsecured
basis, while Danish Mortgage Backed Securities are loans backed by property.
When buying Bolig-X bonds the investor should hence make an assessment for
the remaining maturity of the loan, whether the credit risk of Danish households
will be higher or lower than on a CIBOR based loan. With one year ARMs on
the other hand investors have the possibility to adjust prices in case of changes
in the credit risk.

To summarize, there are differences between plain Bolig-X loans and Flexloans
with yearly adjustment. These differences are solely related to differences in
transaction costs, tax issues and credit risk and it would be difficult before
hand to assess whether Totalkredit’s bonds would be priced higher or lower

11



than traditional straight ARMs.

7 Interest rate caps and guaranties

There should be an obvious need to put a ceiling over the payments on an ARM
and among others RD and Nykredit offer 1-5 year interest guaranties where
the mortgagor can choose a cap rate of e.g. 7% or 8%, see e.g. Thomsen &
Tgrnes-Hansen (2000) and Bondorf, Sgrensen & Carlsen (2000). These interest
rate guaranties are sold as supplementary products to ordinary Danish ARMs.

By selling the interest rate guarantee as a separate product they manage
to keep the underlying ARMs simple and liquid and at the same time provide
the mortgagors with high flexibility with respect to the design of the guarantee.
Despite this, these products have been almost ignored by mortgage holders. In
complete contrast the majority of Totalkredit’s customers have preferred to pay
a yield premium to get a 5 year coupon rate cap.

There are probably several reasons for this. Interest guaranties are sold by
a bank attached to the individual mortgage credit institution and until now the
guaranties have likely been too expensive relative to the market value of the
corresponding option. Furthermore, on early redemption of the mortgage the
interest rate guarantee has to be sold back to the bank at a price determinded
by the bank, which is probably going to be lower than the market value.

So far the interest rate guarantee has been paid either up-font or through the
contribution rate. The first method is not tax-deductable and it is likely that
the last method wil be rejected by the tax authorities. Under all circumstances,
redemption or transferring of the loan will result in full taxation of any profits
on the interest rate guarantee.

In contrast the payment of the guarantee is embedded in the Bolig-X loan
as a yield premium on currently 20 basis points. The cap is priced as a part of
the bond and hence we expect a relatively sharp pricing. After a severe increase
in interest rates the mortgagor could cash in the value of the cap by exercising
the delivery option and buy his bonds back in the market. As Bolig-X loans
are issued as bond loans any profits are not taxable. The yield premium is,
however, fully tax-deductable as well as any transferring of the loan will not
release further taxes.

To summarize, we argue that the flexibility which should characterize interest
rate guaranties on ARMs is drowned in transaction costs and in the fact that
the tax authorities require a close connection between interest rate guarantee
and the underlying bond. The Bolig-X construction has from the beginning
omitted that flexibility. In return the mortgagor gets the interest rate insurance
at the lowest possible price both before and after tax. Last but not least is the
marketing. Totalkredit has unambiguously marketed the Bolig-X loan with cap
while e.g. RD and Nykredit have hardly marketed their corresponding interest
rate guarantee products.

12



8 Adjustable-Rate Mortgages and callable Fixed-
Rate Mortgages

Figure 5 shows the price-yield relationship for the two Bolig-X loans together
with a traditional callable fixed-rate annuity 6% 2032 (6-32 denotes coupon
and maturity). There are obvious differences. 6-32 is prepayable at price 100
but despite this, the price is getting over 100 because the investors know from
experience that many mortgagors are slow to take advantage of their right to
prepay. That is investors receive a high coupon for a longer time. Only when
all mortgagors decide to prepay the price will be 100. This corresponds to the
investor getting the return on his investment reset to the market level.

The coupon rate of the ARM automatically follows changes in the market
rates. Hence for investors this corresponds to a situation where all mortgagors
are following an optimal prepayment strategy without transaction costs. The
ARM with a 6% cap is therefore less worth to investors than the corresponding
callable 6% fixed rate mortgage. On the other hand, mortgagors with ARMs get
full pleasure of the decreasing interest rates without paying transaction costs.

In the assessment of the individual mortgagor’s interest rate risk it is not an
issue that the price of the callable FRM gets over 100, as he or she always are
allowed to repay at par. Hence, if we assess a mortgagor’s interest rate risk out
from holding period costs’, the two loan will be more or less situated equally.

If the interest rate increases there will be major differences. A short rate
on 6% (CIBOR 6.33%) corresponding to a 2.3% increase in interest rate level
from October 1th, 2001 will reduce prices of BXL-05 to 99.26 and BXL-07 to
98.10. On the other hand the price of 6-32 will fall to 81.54. A mortgagor who
is about to sell his house will therefore be much better off with at traditional
callable FRM mortgage in case of an increase in interest rates.

The difference is that the traditional FRM affords protection against increas-
ing interest rates 30 years ahead, while the Bolig-X loans protection expires in
4-6 years at a time where the mortgagor has only repayed a small fraction of the
principal. For straight ARMs and Bolig-X loans the difference is of course even
larger as the mortgagor is completely unprotected to increasing interest rates.

The interesting part about the Bolig-X loan’s construction is that the solu-
tion is right ahead. Mortgage credit institutions ought to issue Bolig-X loans
with a longer time to maturity e.g. 20-30 years. Hence, the mortgagor would
receive protection during the total amortization period, and if the house is to
be sold after an interest rate increase the bonds could be redeemed at a price
way under 100. This is also illustrated in figure 5 where we have included a hy-
pothetical BXL-32, that is a 30 year Bolig-X bond with a cap rate of 7.7%. The
price yield curve for this bond is much more similar to the traditional callable
FRM. For comparison we have furthermore included model prices for a BXL-
6%-32 that is a Bolig-X loan with 30 years to maturity and a cap rate of 6%.
The price of this bond is always below the price of the corresponding callable
loan, but afford the same protection against interest rate changes. At the same
time there will be many situations where the mortgagor pays a lower interest.
The callable bonds are normally traded with a spread to the swap curve. This

"Holding period costs include the accumulated current payments as well as the market
value of the remaining principal. See eg. Jakobsen (1998) for definitions and examples.
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Figure 5: Price yield relationship for Bolig-X loans compared with a traditional
6% Callable Fixed Rate Mortgage.

spread is included in the price of the 6-32%. On the other hand we have not
included this spread on the Bolig-X loans. If Bolig-X loans are also traded with
a spread their prices will decrease and it would be relatively more expensive to
finance property using Bolig-X loans”. As discussed in Jakobsen & Svenstrup
(2000) the primary reason as to why there is a spread is that the investors re-
quire a premium to take on risk about mortgagors prepayment behavior. In a
Bolig-X loan there is no uncertainty about future prepayment behavior, so from
that point of view we could expect a spread much closer to zero.

9 Market valuation of Bolig-X bonds

Market participants are likely to charge a premium due to the liquidity issues
and other non-standard issues in Bolig-X bonds. The 10 day average and the
fixing prior to the term period are not similar to the standard fixing rules on
the Euro market. To estimate the size of the spread that the mortgages trade
with we have set up calculations for all trade dates in the period May 10, 2001
to April 2, 2002. The model has been extended to include time dependent
parameters and have been calibrated on a daily basis to the swap curve and a
set of ATM swaption quotes. In order account for skew in implied volatilities
we would have preferred to include out of- and in the money caps or swaptions
in the calibration sample. However, these where not available to us.

In Figure 6 we have plotted the market and model prices for the BXL-07.

8The spread to the swap curve usually labeled OAS is about 50 bp at the initial interest
rate level at 3.7%, which gives a price of 97.71. The spread decreases to 0 at an interest rate
level of 7% in aggrement with the method in Jakobsen & Svenstrup (2000). If the spread is
set equal to 0 the price of the 6-32 would be 101.95.

9Later in the paper we estimate the spread to be somewhere between 20 and 30 basis
points.
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On the right axis the option adjusted spread has be plotted. The OAS is here
defined as the continuously compounded spread that will equate the model and
market price when used as an additional discount factor. As we would expect

the model prices are higher than the market prices, which gives rise to a positive
OAS.
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Figure 6: The market and model prices of the 2007 Bolig-X loan with a 7.7%
cap rate. The CIR model has been calibrated on a daily basis to the Reuters
swap yield curve and a set of swaptions. The option adjusted spread OAS is
the additive continuously compounded spread that will equate the model price
with the market price.

Table 3 shows summary statistics for the net present value (NPV) which
is the difference between the model and market price, the OAS and 6 month
CIBOR during the period. The median NPV is 1.11 price point and the 25% and
75% percentiles are 0.89 and 1.2 price point. OAS is another way of expressing
the NPV, as it is the yield required to amortize the NPV over the remaining life
of the bond. Hence, these two measures are highly correlated with a coefficient
of 0.97. The OAS has been between 18 and 34 bps during the period and with
an average of 25. This seems to be a reasonable spread compared to similar
products on the Euro market but maybe on the large side.

Total Mean Median Max Min  Percentile

Obs 25% 5%
NPV 221 1.07 1.11 141 0.77 089 1.2
OAS (bp) 221 25 26 34 18 21 29

CIBOR 6M % | 221 4.13 3.82 5.17 3.48 3.65 4.73

Table 3: Summary statistics for the net present value NPV, the option adjusted
spread (OAS) and the 6 month CIBOR during the period May 10, 2001 to Apr
2, 2002.
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An ARM settled continuously at the short rate would have a zero duration.
However, in case of a lower fixing frequency any fixed payments will have a
duration corresponding to the time to their maturity, a result well-known from
zero coupon bonds. Therefore, the duration of the Bolig-X loans will depend on
the number of fixed coupons, which could be from 1 to 3 and the time to the
next term date. For the Bolig-X bonds with caps the duration is also effected
by the size of the yield premium and the embedded caps. Figure 7 shows the
Krone Duration and the Krone Convexity of the BXL 07 bond!'® as well as the
6 Month CIBOR rate. Notice that the embedded cap is out-of-the money as
the CIBOR rate have been less than 5.17% during the period.

Maybe the most interesting observation that can be made from figure 7 is
the development of the duration as time passes. In the middle of May 2001 three
payments have been fixed with a maturity of roughly 1, 4 and 7 months(this
portfolio would approximately have a duration of (14+4+7)/12) 1 year. As time
passes the duration of these payments decrease until the beginning of the next
fixing period Nov 1, 2001, where only one payment (with maturity 2/12=0.17)
is left. Each day of the fixing period a tenth of the next coupon rate is fixed.
This is easily seen in the figure, as the duration increases from the beginning
to the end of the fixing period. Ignoring the 10 day average during the fixing
period would therefore cause durations to be seriously distorted. A study of the
importance of index dynamics for the interest rate sensitivity of ARMs can be
found in e.g. Stanton & Wallace (1999).
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Figure 7: This figure shows the Krone Duration (Dollar Duration) and the
Krone Convexity (Dollar Convexity) on the left axis. On the right axis the
development in the 6 Month CIBOR is shown.

Tests show that ignoring the 10 day average when fixing future payments in

10The Krone Duration and Convexity are here defined as the Krone sensitivity to a discretely
compunded parallel shift to the entire yield curve. Both figures are computed from the usual
finite difference approximation. Krone or Dollar durations refer to the fact that it is an
absolute sensitivity and not a relative sensitivity. To get the relative duration divide by the
dirty-price. We use market practice of calculating the duration keeping the OAS fixed.
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the grid has almost no effect on price (see also Appendix).

10 Design of mortgages

In this section we discuss the design of Bolig-X loans and look at aspects related
to counselling of house holders in their mortgage choice. We disregard costs and
contribution fees and focus primarily on the payments before tax.

Our main suggestion is to issue 30 year Bolig-X bonds and hence get the
interest cap during the entire amortization period. The existing Bolig-X bonds
and hence the caps mature in 4 to 6 years. In 4 to 6 years the mortgage holder
will only have repaid a few percent of the initial principal and as illustrated in
figure 8 the value of the remaining principal will almost be par for all interest
rate levels. Even though the Bolig-X loans right now include a better protection
than the straight ARMs, the protection disappears rapidly in a few years.

Worst case scenario is of course an increase in interest rates combined with
falling prices of housing. Households facing a borrowing constraint will not be
able to pay the mortgage but on the other hand they will not be able to sell their
house without loss. It is also too late to refinance into FRMs as the payments
in these bonds would be at an even higher level after an increase in interest
rates. In this situation compulsory sales would flourish with a further pressure
on house prices'!.

On the other hand if the mortgagor had issued an ARM with an interest
rate cap, then as long as the household can meet the payment corresponding to
the cap rate he or she could stay. Even if the household chooses to sell, the cap,
cf. figure 8, will mean that the price of loan will be below 100, so it is likely
that the household can repay the debt even with decreasing house prices.

Everything equal mortgagors will prefer a long cap on a low level. On the
other hand investors will charge for this cap by lower prices and hence higher
payments. As it will be evident from below the mortgagors have to weigh low
payments right now against high safety.

Figure 9 shows model prices for Bolig-X bonds with a maturity of 5, 10, 15,
20 and 30 years and cap rates on 6, 7, and 8%. The underlying mortgages are
all 30 year. In order to compare we also included the price of 30 year Bolig-X
loan without cap and a 6% callable FRM computed with and without a option
adjusted spread. In all calculations the first coupon has been set equal to the
level on October 1, 2001, that is 3.97%. The three Bolig-X loans with a cap all
include a 20 bp yield premium.

As expected a lower cap rate will result in lower prices e.g. 6% to 8%. The
same holds for a longer maturity of the bond and hence a longer cap. Anyway,
the difference between a 30 year Bolig-X loan without cap and a Bolig-X with an
8% cap is less than 1 point. If one wants a 6% cap rate it will cost approximately
7.5 price points. In both cases the mortgagor pays an additional 20 bp yield
premium. It is interesting that there is less than 1 point difference between
getting a 20 and 30 year interest rate cap. This is among other things due to
amortization of the principal which is very fast in the last period of the loan.

H An alarming feature is that in these days it is argued that house prices are increasing
because of the ARMs. We fear that the longer time we have low rates the more reckless the
households and their counsellors get and the smaller increase in interest rates is sufficient to
ruin the housing market.
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Figure 8: Price movements over time for two Bolig-X bonds. The two full lines
show the price yield on October 1, 2001 while the dotted lines show the prices
5 year ahead. This figure illustrates how rapidly the interest rate protection
decreases for the BLX-07 bond.

If we compare it to the 30 year 6% callable FRM it will cost 97.72 if we add
a spread corresponding to the market spread October 1, 2001, while the price
without spread is 101.95. That is, even with the spread the callable FRM is
more expensive than a Bolig-X loan with a 6% cap, which reflects the fact that
investors receive the full 6% in coupon together with the irrational prepayment
behavior in case of decreasing interest rate.

In table 4 and figure 10 we have calculated the actual and maximal payments
for the given loans. All loans have a proceed of 1 million DKK. We have disre-
garded all costs and contributions. For the Bolig-X loans we take a CIBOR rate
of 3.97% as of October 1th, 2001 as starting point'?. If the mortgagor chooses a
loan with a 6% cap rate she will have to make a monthly payment of 5,256 DKK.
If interest rates increase the maximal payment is 6,471 DKK. In case a 8% cap
rate is chosen the bonds can be sold at a higher price and the payment right now
will be 4,889. In return, the maximal payment before tax is now 7,374 DKK
per month. The cheapest mortgage right now is of course the Bolig-X without
cap, which corresponds roughly to a standard Danish ARM (F1). Here there is
no ceiling over future payments. Finally, there is the traditional callable FRM.

I2The mortgage coupon on January 1, 2002 has been set at 5.36% but in the calculations
we have chosen to compute the current payment from the interest rate level as of October
1, 2001 as is given by a short rate of 3.7% corresponding to a 6 month CIBOR of 3.974%.
We have used 121 quarterly term dates. With a quarterly coupon rate of (3.974+0.2)/4 =
1.04351% and 121 terms the quarterly payment per 1 mil. DKK in principal is 14,590. For a
30 year Bolig-X loan with a 6% cap the price is 92.535. To receive a proceed of 1 mil. DKK
the first quarterly payment would be 14,590 - 100/92.535 = 15,767, corresponding to 6256
DKK a month. The maximal payment is computed in the same way just with a quarterly
coupon of 6%/4=1.5% in stead of 1.04351%. Notice, that in periods with a coupon rate below
the maximum rate the debt is repayed faster, which subsequent would reduce the maximal
payment.
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Figure 9: Model prices for bonds depending on cap rate and maturity.

This mortgage has the highest mortgage right now but in return this payment
cannot increase, and it is furthermore the mortgage with the lowest maximal
payment.

At the moment all historical experiences are disregarded and all mortgagors
are advised to issue ARMs. Just a few years ago the advice was that a household
should at least afford to finance the house using traditional callable FRMs. If
this was the case then maybe an ARM could be considered. Even this piece of
advice is problematic as the ARM could show to be more expensive than the
alternative FRM that originally was rejected.

If the market offers a range of loans with lifetime cap rates the counselling of
mortgage holders would be much concrete. A mortgagor could use the maximal
possible payment as reference point. Given this maximal payment there will
be a tradeoff between proceeds and the initial payment, such that a higher
proceed will require a less risky mortgage. This is completely in line with the
US litterature discussed in the introduction.

If we focus on the payments before taxes there is a relatively small difference
between mortgages with a 6% and 8% cap rate. The difference is larger in an
after tax consideration as the loan with a 6% cap is issued as a bond loan at
price 92.5, that is with a loss due to depreciation that is not tax-deductable. In
practice one would either issue the bonds as cash loans or issue bonds with a
higher cap rate e.g. 7% or 8%!3.

131t is also possible to increase the yield premium to e.g. 60 bp. This would increase the
price from 92.53 to 94.27. The problem is that an increased yield premium does not have an
effect in those scenarios where the cap already is binding, so that a very large yield premium
is required in order increase the price.

On the other hand as the yield premium works as a fixed payment during the entire maturity
of the bond it increases the mortgagors minimum payment and hence the price risk when
interest rates decrease.

The maximal price is obtained at a premium of 6%, that is the mortgagor will never pay less
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Maturity in Years

Loan Type 5 10 15 20 30

6% cap 4,891 5,023 5,137 5,209 5,256
™% cap 4,859 4,914 4967 5,002 5,024
8% cap 4,845 4,854 4871 4,882 4,889
6% cap Max 6,022 6,185 6,326 6,414 6,471
7% cap Max 6,642 6,717 6,790 6,837 6,868
8% cap Max 7,307 7,321 7,346 7,363 7,374
6-32 incl. spread | - - - - 6,128
6-32 excl. spread | - - - - 5,874
BX no cap - - - - 4,740

Table 4: Monthly payments before taxes for a mortgage with a proceed of 1
mio. DKK depending on cap rate and maturity of cap. The current payments
are only known until next refinancing date. This means that only the 30-year
bonds have a life time cap.

11 Discussion

In our opinion long ARMs with life time caps have the potential to create a
seminal innovation of the Danish mortgage market. In contrast to the existing
straight ARMs these bonds put a necessary ceiling on the mortgage payments.
Allowing ordinary households to buy houses on the borderline of their financial
capabilities and only financing the first year of a 30 year amortization period is
in our opinion totally irresponsible. With a life time cap the maximal payment is
guaranteed and the calculations show that the payments will only be marginally
higher than the unsecured loan. The risk has not disappeared but it has been
transferred against charge from the mortgagor to the financial investors in the
money- and bond markets. Furthermore, the existence of the cap increase the
value of the delivery option.

Compared to traditional Danish ARMs with interest rate guaranties the
Bolig-X product is simpler, more easily clarified in relation to taxes'* and prob-
ably also cheaper. At least they sell better.

In relation to the traditional callable FRMs the Bolig-X bonds give similar
insurance when interest rates increase and automatic payment reduction when
they fall. Mortgagors avoid transaction costs when prepaying and investors
are able to cover their interest rate risk using standard interest rate products
without worrying about modelling prepayment behavior and other difficulties
related to the traditional FRMs.

Just as for callable FRMs there is a risk of illiquid bond series. If the level
of interest rates gets close to or higher than the cap rate the prices will drop
too far below 100 and hence prevent new issues in that series. In case of a
lower interest rate, mortgagors are likely to prefer series closer to the money.
However, old series could be reopened if interest rates return to the initial level.
In contrast to existing callable FRM series these are not required to be closed

than 6%. But that is exactly a 30 year non callable loan - which is something no household
wants to issue.

M There has been issues with tax authorities but according to Totalkredit these issues have
been settled.
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Figure 10: Actual and maximal payments before tax as a function of maturity
for loans with a proceed equal to 1 million DKK. Series with full marks represent
the current payment and the dotted marks the corresponding maximal possible
payments.

for new issues when prices exceed 100.

Illiquid bonds at prices below 100 could mean that mortgagors have to buy
at a premium in order to redeem their loans. This is also the situation for
traditional callable FRMs. With an adjustable rate it is unlikely that mortgagors
risk redeeming their bonds at prices above 100. Under all circumstances this
type of bonds will not depend upon the behavior of the borrowers and the
individual mortgage institutions series will be close substitutes.

In the sketched bond type the interest rate cap cannot be changed. In
practice it could happen by a simple renewal of the loans. After an increase
in interest rates the mortgagor could redeem his old loan at market price and
issue a new bond with a higher cap rate. After an interest rate decrease the
mortgagor could against an additional payment take out a new loan with lower
cap rate.

As an alternative to these prepayments the institutions could choose to em-
bed an automatically adjustment in the loan. In the US market ARMs are
issued with so called rolling caps as well as lifetime caps.

A traditional problem with adjustable rate mortgages is to find a stable
index rate. It won’t be a problem that Totalkredit’s bonds with a nominal of 25
billion DKK is linked to 6 month CIBOR, but if the mortgage credit institutions
are to fix 3-400 billion DKK on CIBOR in too short periods every year, then
a tremendous focus would be put on the banks that report CIBOR. Similarly
the liquidity in traditional F1 ARMs would probably drop dramatically if RD
offered loans indexed after the Fl-rate but also had 10, 20 or 30 year caps.

The starting point for our calculations is that long Bolig-X like bonds are
priced in line with or better than traditional callable FRMs. It is naturally an
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open question whether the market is willing to absorb large issues of Bolig-X like
series even though a corresponding amount of the traditional bonds are repaid.

All these considerations are of course of hypothetical nature and the proposal
to Totalkredit and other mortgage credit institutions is simple to try. The
product could die quietly but it could also turn the Danish mortgage market
upside down. Apparently there are lots of mortgagors who dare to refinance
their house once a year in order to obtain a lower payment right now, but it is
our assessment that even more are willing to pay a bit extra if they can budget
with a maximal mortgage payment the next 30 year.

12 Conclusion

In the Danish mortgage market mostly straight ARMs have been issued. How-
ever, the US mortgage choice literature indicates that hybrid ARMs are attrac-
tive to mortgagors and the experiences from the Bolig-X bonds support this.
Furthermore, our calculations indicate that the limited effect on monthly pay-
ments of buying life-time out-the-money caps, will be of interest for many of
the mortgagors currently rolling over their 30 year mortgages at the 1 year rate.
It appears very reasonable that risk averse mortgagors will be willing to insure
themselves against worst case losses. The more likely it is that interest rates
are going to increase, the more expensive it will be to get a life time ceiling over
the mortgage payment. However, this is not a reason to issue a straight ARM
- on the contrary.

Also of interest to e.g. the US mortgage market, we argue that the delivery
option is a very important and efficient means to ensure a tighter match between
the assets and liabilities in a household portfolio. Furthermore, a by-product of
the delivery option is an increase in the mobility of the labour force as a whole,
which could also be of macro-economic importance.
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A Appendix

Tests show that ignoring the 10 day average when fixing future payments in the
grid has almost no effect. The length of the fixing period is simply to short
relative to the time between two fixings in order to have a significant impact of
the index volatility. To illustrate this consider for example the variance of an
average in a Vasicek model

dry = Kk (pu — 1) dt + odWy.

n
If we let Ap = % Zrti it is easily seen using the property of independent
i=1

increments that

1 ¢ 1 =
Var (Ar) = Var (5 i_zlrti> = ﬁVar (l_zl Tti>

1
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n o 12
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Hence if the A; is large relative to the rest of the intervals the decrease in
variance is small. In the case of the Bolig-X loans even for the first fixing there
will be 6 months and the fixing period is 10 days then A; = 0.5 and A; = 1/252
hence the period from tq to t; contributes with 98% of the total variance of Ar.
For following fixing periods this is even more pronounced as A; is even larger
while other A;’s remain the same. Of course this argument does not hold as we
approach a fixing period, but then the value of the cap is not as sensitive to the
volatility.
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Abstract

This paper concerns the problem of valuing Bermudan swaptions in
a Libor market model. In particular we consider various efficiency im-
provement techniques for a Monte Carlo based valuation method. We
suggest a simplification of the Andersen (2000) exercise strategy and find
it to be much more efficient. Furthermore, we test a range of control
variates for Bermudan swaptions using a control variate technique for
American options proposed in Rasmussen (2002). Application of these
efficiency improvements in the Primal-Dual simulation algorithm of An-
dersen & Broadie (2001) improves both upper and lower bounds for the
price estimates. For the Primal-Dual simulation algorithm we examine
the variance-bias trade-off between the numbers of outer an inner paths.
Finally, we demonstrate that the presence of stochastic volatility increases
the expected losses from using the simple strategy in Andersen (2000).

JEL Codes: G12; G13; E43;

Keywords: Bermudan Swaptions; Control Variates; Ezercise Strategy;
Primal-Dual Algorithm; Stochastic Volatility;

1 Introduction

For a long time valuation of options with early exercise features or other free
boundary problems by simulation was considered impossible. Researchers and
practitioners have been focusing on lattice methods such as trees and finite dif-
ference methods whenever these American style contingent claims were encoun-
tered. It is well known that lattice methods suffer from a curse of dimensionality.

*The authors acknowledge comments and insights from Nicki S. Rasmussen, Leif B.G.
Andersen, and Tom Engsted. This research was supported by ScanRate Financial Systems.



This means that valuation of assets with payoffs depending on more than three
state variables is considered to be unfeasible. This is the case for options on
several assets, interest rate models with a large number of state variables, and
models driven by several factors.

A key contribution to the solution to this problem was given in Broadie
& Glasserman (1997), where a simulation algorithm providing asymptotically
unbiased upper and lower bounds on the option value was presented. The
problem with this method is that it is difficult to generalize and requires that
there are few exercise decisions. However, recently new algorithms have been
developed.

Haugh & Kogan (2001) present the value of an American option as the so-
lution to a dual minimization problem over all super martingales, so that any
given super martingale will result in an upper bound for the option. Andersen &
Broadie (2001) recognize that the use of a martingale instead of a submartingale
in the dual problem expressed in Haugh & Kogan (2001) will result in tighter
upper bounds and they propose an improved simulation algorithm. A primal so-
lution algorithm that provides an exercise strategy and hence an estimate of the
lower bound is input to this new Primal-Dual simulation algorithm. Any primal
algorithm can be applied, for example Least-Square Monte-Carlo ( Longstaff &
Schwartz (2001)), nonparametric methods (Andersen (2000)), low-dimensional
lattice methods (Longstaff, Santa-Clara & Schwartz (2001b)), and others.

Andersen & Broadie (2001) demonstrate the simplicity and efficiency of the
simulation algorithm in several examples, including multi-asset equity options
and Bermudan swaptions. However, only little emphasis was placed on numer-
ical efficiency and variance reduction techniques.

For the purpose of pricing American style contingent claims in a Monte Carlo
framework Rasmussen (2002) develops an extension of traditional control variate
techniques, in which sampling of the controls occurs at the time of exercise of
the American option and he demonstrates the efficiency in the multi-asset equity
option case.

The primary contributions of our paper are the following. First, we demon-
strate that a simplification of the exercise strategies proposed in Andersen (2000)
proves much more efficient in the Bermudan swaption case. Due to the struc-
ture of Bermudan swaptions, the most valuable core European swaption will
almost always be the first to mature, and we show that ignoring the rest is
computationally more efficient but results in the same prices. Secondly, we test
the efficiency of a range of control variates with respect to Bermudan swaptions
using the Rasmussen (2002) sampling algorithm. We illustrate how to apply
it using dividend paying assets. Thirdly, we consider the rate of convergence
of the Primal-Dual algorithm with an emphasis on the variance-bias trade-off
due to nested simulations. When combining the simplified strategies and the
control variates with a better variance-bias trade-off we experience significant
improvements, and more specifically we get lower duality gaps and lower stan-
dard deviations in less time.

Finally, we implement a version of the Libor market model with stochastic
volatility in order to examine the effect on Bermudan swaptions. As expected.



we find that the duality gaps are increasing in variance of the volatility and
decreasing in mean reversion. Our work is also related to Bjerregaard Pedersen
(1999) who applies the Broadie & Glasserman (1997) method to Bermudan
Swaptions.

The general model setup, notation and problem statement are laid out in the
first section. Furthermore, we briefly summarize theoretical results required in
the rest of the paper. In section 3 and section 4 we briefly introduce the Primal-
Dual simulation algorithm and some variance reduction techniques. The Libor
market model and the assets, that are considered in this paper, are introduced
in section 5. Numerical results are found in section 6, and finally, we make our
conclusions in section 7.

2 The Optimal Stopping Problem

We assume that we have a dynamically complete financial market in which all
uncertainty is described by a standard filtered probability space (Q, FAF} <t<T> ]P’) .

The information set F; is defined as the natural filtration generated by a multi-
dimensional Wiener process which drives all asset prices until some fixed time T'
augmented with the usual null sets. We assume the existence of a P equivalent
probability measure Q under which asset prices discounted with the numeraire
asset B (t) are martingales. Let EZ () = E2 (-|F;) denote the expectation con-
ditional on information available at time ¢. Hence, the time ¢ value of any asset

Q (t) is given by o) ol
A D i 5.
w0 =2 (507) ¢

American options are options with an early exercise feature and are charac-
terized by the payoff h (¢) paid upon exercise and the set of dates 7 on which
the holder is allowed to exercise. American options, which can only be exercised
on a discrete set of dates, are often referred to as Bermudan options.

The problem of valuing an American option is usually posed as an optimal
stopping problem. Following Andersen & Broadie (2001) and Haugh & Kogan
(2001), we will denote the following the primal problem

QW) _ . go(h)
IO (B(r)) o

where T () denotes the set of optional stopping times 7 taking values in 7 (t) =
T N[t, T, T being the maturity of the option. Notice that any optional! stopping
time belonging to ' (t) will generate a lower bound on the true option price.

!'We refer to stochastic calculus textbooks (e.g. Protter (1995)) for a definition of op-
tional stopping times, and we assume that all stoppings considered are optional for the given
processes in question.



Andersen & Broadie (2001) define the dual problem to (1) by first noting
that a valid upper bound can be found by using any adapted martingale 7,

w = su o (A7) Ty —T

Bo) S o (B G > ®
= v su Q h (T> — T
B 0t TGFI()O) Eo <B (T) T>

IN

o5 (s (55 ) ®

The second equality follows from the Optional Sampling Theorem and the mar-
tingale property of 7. As (3) holds for any martingale, it follows that

0 h(t
B < (o ef [y (5 —)]) @

This definition of the upper bound is slightly different to the one proposed in
Haugh & Kogan (2001). They define the dual problem over all super martingales
which, of course, includes all martingales. This generates more conservative
upper bounds, as also noted in Footnote 1 of Andersen & Broadie (2001). This
can easily be seen as the optional sampling theorem for super martingales adds
an extra inequality in the derivation of the upper bound in equation (2) as
mo > EQ (7,) when 7 is a supermartingale.

It can be proved that, when choosing 7 in equation (2) as the martingale
part of the Doob-Meyer decomposition of the deflated price process Q(t)/B(t),
equation (2) holds with equality. As a result, Andersen & Broadie (2001) pro-
pose to use the martingale part of a discounted lower bound price L(t) as a
proxy for the true value process. The lower bound price is defined by

w0~ (50)

where 7; is an optional stopping time given by some exercise strategy used from
t and onward. Having defined the lower bound process we use the following m
martingale process

™ (tl) =
and for exercise dates to, ..., tq

L(ty) L(tk—1) L(ty) L(tg—1)

= T - — I (tp_1)EY - .5

me et By e B B - B ©
With this choice of 7 process, an upper bound is seen to be the lower bound plus
the value of a non-standard lookback option Dy, which is denoted the duality

gap
Q) _ L(0) h(t) L(0)
B(0) = B(0) +E (tg%) <W 7”)) “Bo T




3 The Primal-Dual Simulation Algorithm

We apply the simulation algorithm laid out in Andersen & Broadie (2001) and
refer to their paper for a thorough discussion of the entire algorithm. However,
a short outline is appropriate. The algorithm generates estimates of the duality
gap Dy by simulating the 7 process and the discounted payoff process h(t)/B(t).
The main difficulty is determining the L (¢) /B (t) terms in the 7 process given
by equation (5.). This is effectively done by running nested simulations replacing

L (tx) /B (tr) and Eg (]Lg(é’;ill))) with Monte Carlo estimates based on m nested

simulations g((i’;)) + ¢, and Eg (]LB((%J:))) + slk respectively. e, 6; are the mean
zero simulation errors. By summing noise terms in 7 it follows that the Monte
Carlo estimate 7 of the exact m process is

Tk = Tk + Ek,

where the noise term &j is a sum of the mean zero noise terms. It can easily
be proved that the noisy estimates of the m process make the estimate of the
duality gap Do upward biased. Hence, the Monte Carlo estimator of the duality
gap Do using n ”outer” simulations and m inner simulations, is

Fal o 1 i hl (tk) ~7
Do (nm) =23 max, (Bi(tk) N ”k) '

=1

Using both the upper and lower bound we can construct a somewhat conser-
vative confidence interval for the price estimate based on an n X m simulation
trial, as

Lo (n) — Z1-g gL\/%n) . Lo (n) + Do (n,m) + zl%\/‘éién) + ) (:: m)| (6)

where z, denotes the xth percentile of the standard normal distribution and §j,
and $p are the sample standard deviations.

4 Variance Reduction

Andersen & Broadie (2001) do not consider variance reduction techniques. In
this paper we test the effect of antithetic variates (AS) and control variates
(CV) see e.g. Glynn (1994). A more elaborate discussion of variance reduction
techniques applied in a finance setting can be found in e.g. Boyle, Brodie &
Glasserman (1997).

4.1 Antithetic Variates

The method of antithetic variates is widely used and is based on the simple
observation that if € has a standard normal distribution so does —¢. The idea is



that random inputs obtained from the collection of antithetic pairs {(&;, —&;)}/_,
are more regularly distributed than a collection of 27 independent samples.
However, antithetic variates only work when the discounted payoffs estimated
from ¢; and —¢; are negatively correlated - increasing efficiency with correlation.
As a result, antithetic variates work very well for linear integrands and fails in
the case of symmetric integrands. For simple options, determining the efficiency
of antithetics beforehand can sometimes be done. However, when dealing with
path-dependent American options, this is not possible.

4.2 Control Variates

The method of control variates is based on the principle 'use what you know’.
The most straightforward implementation of control variates replaces the eval-
uation of an unknown expectation with the evaluation of the difference between
the unknown quantity and another expectation whose value is known. Sup-
pose we at time ¢ know the expectation EZ [Y] of an M —dimensional stochastic
variable Y. Assuming that we can sample I realizations of a scalar variable Z
exactly, an unbiased estimator Z€V of EX[Z] is given by

I
2B =13 (7 -5 (vi - B2 ) 7)
=1
with variance
Var (207 (9)) = 7 (0% — 28'Sv 5 + F'Sv) (8)

for some appropriately chosen vector 3 € RM. Here 0% is the variance of Z,
Yy denotes the covariance matrix of the controls and Xy z is the vector of
covariances between Z and Y.

The variance minimizing choice of § is given by

B =3y Syz. (9)
Inserting (9) into (8) we have at optimality
1

Var (Z£V(87) = 7 (1 - B?) %,
where L
R2 — /YZE;’ Yyz
==
A

Thus, effectiveness is determined by the size of the coefficient of multiple corre-
lation R between Z and the control variates Y. In addition we notice that since
R? € (0,1) using the variance-minimizing coefficient 5*, we are guaranteed not
to increase variance.



4.2.1 Control Variates for American options

It is not immediately clear how control variates may be applied to American
style options. A naive guess would be to sample the controls at fixed times
in the exercise period. In a recent paper, Rasmussen (2002) illustrates that
the control sampled at the time of exercise of the Bermudan option, has much
higher correlation with the discounted payoff from the option than with the
control sampled at e.g. expiry of the option. It is shown in particular, that
for any given martingale process Y and optional stopping times 7, ¢ for which
t<7<o0<T Q-a.s. then

corr (Z, YT)2 > corry (Zn, Y,,)2 )
Hence, we choose to sample controls at the exercise time, that is

Y (r)=EQ(Yy), T <T.

5 Bermudan Swaptions in Libor Market Models
5.1 Libor Market Models

Since the seminal papers of Miltersen, Sandmann & Sondermann (1997), Brace
& Musiela (1997) and Jamshidian (1997), Libor market models have become
increasingly popular in the practitioners’ world, as the models are reasonably
easy to calibrate and allow closed form solutions for caps and swaptions (though
not simultaneously). Several extensions have been proposed. Jamshidian (1999)
develops a general theory for Libor market models driven by semimartingales.
Along this line Glasserman & Kou (1999) developes a version with jumps, driven
by a marked point process, which has closed form solutions for certain deriva-
tives. We follow the approach taken by Andersen & Brotherton-Ratcliffe (2001)
who developed an extended Libor Market model with a continuous stochastic
volatility process independent of the forward rates themselves.

The Libor market model is defined on an increasing tenor structure 0 =
To < T1 < ... < Tg41. Let n(t) denote the right continuous mapping function
returning the index of the next tenor time 7(t) = {j:T;_1 <t <T;}. The
simple forward rate F}, (t) for the period T} to Ty1 is defined by

1 P(t,Tk)
Frbt)=— | ——— -1 0 =T, — T,
i (1) 5 (P(t,TkH) >7 k= Thy1 — Tk,

where P (t,-) denotes the time ¢ discount function. We work under the ”spot
Libor” measure Q (see e.g. Jamshidian (1997)) under which all assets discounted
by the "Bank” account B (t) are martingales. B (t) is the value of an initial $1
investment, rolled over at the spot Libor rate at each tenor date

n(t)-1
B(t) = P (t, T,w) kl;lo (14 0, F3(Tk))-



Andersen & Brotherton-Ratcliffe (2001) model stochastic volatility with
a variance process V(¢) used to scale the diffusion term of all forward rates
e(F®) e (t), E=1,.., K.

Using no-arbitrage arguments (see e.g. Jamshidian (1999)), it can be proven
that the full dynamics under the spot Libor measure Q of the (K + 1) —Markov
system of forward Libor rates, is given by

dFs (1) = o (Fe(®) VV ()M (t) (uk (1) dt+thQ), k=1,..K  (10)
dV(t) = ky By — V() dt+evry (Oy —V(t))dt+ ey (V(t)) dZ11)

where ¢ : RT — R7T is a one dimensional function satisfying certain regularity
conditions, ¢ : R* — RT is well-behaved, A\ (t) is a bounded deterministic
function taking values in R™™, sy, 0y, ey are positive constants and W@ and
Z9Q are m-dimensional and one dimensional Brownian motions under Q, respec-
tively. The drift function for the k-th Libor rate is given by

k
m(® = 3 PELO @ (12

For the approximation formulae for European options derived by Andersen &
Brotherton-Ratcliffe (2001) to hold, it is important that the Wiener processes
driving the variance process and the Libor rates are uncorrelated. We do not
consider calibration issues in this paper but keep the assumption anyway?. Fur-
thermore, it is natural to scale the variance process such that § = 1, meaning
that V' (t) — 1 represents a percentage deviation from the long term mean of the
variance.

5.2 Exercise strategies

An exercise strategy is basically all that we need to get the Primal-Dual al-
gorithm running. Several possibilities exist regarding an appropriate exercise
strategy, including exercise strategies from lower dimensional models which can
be solved using lattice methods, least-square Monte Carlo (LS) (see Longstaff
& Schwartz (2001)), neural networks, or trigger strategies like the ones explored
in Andersen (2000). We have chosen the latter, because of its simplicity and
speed. Bjerregaard Pedersen (1999) finds the Longstaff & Schwartz (2001) and
Andersen (2000) approaches to be mutually consistent for Bermudan swaptions.

The idea in trigger strategies is to reduce the dimensionality of the exercise
decision. We consider exercise strategies of the following form. First, we let
X (t;) denote the option payoff if exercised at time ¢;. The exercise rules specify

2This is also in agreement with theory and empirical evidence regarding unspanned stochas-
tic volatility documented in Collin-Dufresne & Goldstein (2002). Nonzero correlation between
volatility variance and Libor rates would (in princible) make it possible to hedge all assets
using only bonds.



exercise if the payoff is larger than some parameterized function f of the state
vector Z (t;).

0 otherwise

I(t) = { 1 i X () > f(Z();p (L)

Among the exercise strategies we consider for Bermudan swaptions are the ones
proposed in Andersen (2000). First, we let M (¢;) = max (EOj . (ti)) denote
j=i+1,...;e

the most valuable of the still alive core European options EOj,e ().

Strategy 1:

(k) = { 0 otherwise
Strategy 2:

5 1 if X (tl) > Hy (tl) and X (tl) > M (tl)
I° (t;) = ;
0 otherwise
Strategy 3:
3 (t) . 1 le(tl) > Hj (tl) + M(tl)

Y710 otherwise

Strategy 4:

I4 (t) - 1 if X (tl) > H2 (tz) and X (tz) > EOti+1,e (tz)
Y10 otherwise

Strategy 5:
I5 (t) _ 1 if X (tl) > Hj (tl) =+ E0t1+1,6 (ti)
¢ 0 otherwise

Here H; (t) denotes a deterministic function from Rt — R. In Strategy
2, the payoff should be larger than the barrier and the maximal value of the
remaining European options. Finally, in Strategy 3, the payoff should exceed
the sum of the barrier and the maximal value of remaining European options.
Andersen (2000) finds that in certain scenarios the more advanced strategies
pick up additional value compared to the first strategy, but they also increase
the computational burden - especially for options with several exercise times.
When computing the maximal value of the remaining European options required
for Strategy 3, the worst case number of option valuations for each path is of
order n?, where n is the number of exercise times. In worst case, an option
with 40 exercise times would require as much as 40(40 + 1)/2 = 820 European
option valuations for each path. The rationale for these strategies is of course
that the holder of the American option could always sell it to the value of the
most valuable European option.



We propose a small simplification of the strategies using the maximal of the
European values, namely to use only a subset of the core European options as
these are likely to be correlated. In the Bermudan swaption case considered
below, the most valuable core swaption is almost always the first to mature (the
underlying swap is the longest). So, we test two simplifications of the strategies
2 and 3, in which we replace the maximal of the remaining swaptions with the
first to mature European swaption ES (t;). These are denoted Strategy 4 and
Strategy 5, respectively, and we return to their performances in section 6.4.

The critical barriers H;(t) are found using an optimization procedure de-
scribed in Andersen (2000), consisting of a presimulation of paths and a series
of one-dimensional optimizations at each exercise time.

5.3 Bermudan Swaptions

The Bermudan swaption (payer) is basically an option to enter into a (payer)
swap contract with a coupon of k. The standard product denoted BS; ;. is
characterized by three dates: the lockout date T, the last exercise date T, and
the final swap maturity T,. We will consider the fixed maturity case where
Ts < T, < T,, allowing early exercise on dates in the set 7 ={T, Ts41, ..., Ty }.
If the option is exercised at time T}, the holder of the option receives the payoff
from the corresponding European swaption with e — k periods and coupon k. If
exercised at time Ty € 7 the payoff is

BSsae (Th,k) = (Swap (Ty, Ty, Te, k)"

e—1 +
(1 — P(Ty,,T.) — & > 6; P(Tk, ﬂ+1)> .

i=k

From (1) we know that the value at time ¢ < T,_; of the Bermudan payer
swaption BS is given as the solution to the optimal stopping problem

KR) = Ssu Q B—(t) wap\T,T K +
BSs,x,e (t; ) TGFI()t)Et |:B(T) (S p( Ty Te, )) :| (13)

In this paper we only consider Bermudan swaptions where x = e — 1. A
Bermudan swaption with lock-out date T and final swap maturity T, will be
denoted T, no-call T, T, nc T, or T into T,.

5.4 Possible control variates

In this section we consider several assets which we test as control variates.
However, it is important to notice that when applying the Rasmussen (2002)
technique of sampling at the exercise time, we have to be careful with assets that
have several payoff times, as the ex-dividend value of an asset is a supermartin-
gale. If a control asset X (t) is generating a dividend process {7y (Tk)}<p<x 41>

10



we know that the time ¢ value of the remaining discounted dividends is a mar-
tingale and given by

X(t) [ K41

B
Li= n(t)

Li=1 B( 1) ’ 1:‘r+1 B(TZ)>
~ 7 (T3) L X(T7)
— E;Q p3 BT T B (14)

for a given stopping time 7 € I'(¢). Here we have used the Law of Iterated
Ezxpectations for the second equality.

Equation (14) states that, as the initial value includes all future dividends
received from the asset, we have to include all dividends reinvested in the nu-
meraire asset® in the sampling value Y of the asset X. Hence we sample

X(1)
—1 B(Tk) B(T'r>.

(15)

Notice that assets maturing before the option expires can still be used (e.g. zero
coupon bonds).

5.4.1 European Swaptions

From (13) an obvious choice of controls would be to use the discounted payoff
from the core European swaptions ESy e (-, k) /B (-) for Ty, = T, Tsy1, ..., Ty
which are Q martingales*. However, only approximative closed form solutions
for swaptions have been derived (see e.g. Brace & Musiela (1997) or Andersen
& Andreasen (2000)), which in effect means that European swaptions are not
applicable as controls in a Libor market model. Another possibility is to create a
self-financing portfolio replicating as closely as possible the European swaptions
by using the hedge ratios from the approximative solutions, as any discounted
self-financing strategy has to be a martingale in a no-arbitrage setting. This
approach is described below in section 5.4.4.

3 All assets give the same return under the spot Libor measure. Hence, anyone can be used.

4We cannot use the discounted forward swap rate as a control as this is not a martingale
under the measure Q. Each forward swap rate wr, (-,e) is a martingale under the forward
swap measure Q¢ induced by the numeraire B*¢ (.).

11



5.4.2 Caps and Caplets

A more simple solution is to consider caps and caplets, as these have closed form
solutions in a standard Libor market model (see e.g. Brace & Musiela (1997) or
Andersen & Andreasen (2000)). We note that a caplet is a one-period swaption
and hence the price of the cap will always be higher than that of a swaption with
the same coupon, start date and end date, and thus make an upper bound of the
price of the swaption. The question is now which caps or caplets should be used
as controls. In theory, including all possible control variates will never decrease
efficiency, but in practice we could experience problems with multicollinearity.

Hence, a first choice of including all caplets with starting dates in 7 (t) with
a strike equal to the coupon of the Bermudan swaption would mean sampling
all z — s controls®. If we let A denote the minimum operator the sampled values

e Caplet (7 A T, Ty, )
aplet (T kydk, R
=5

We have just argued that a cap with same strike rate and start- and maturity
date as a Bermudan swaption, only constitutes an upper bound, but could be
a reasonable control. In principle it is just a portfolio of caplets and one could
suspect that we might gain more by including all constituent caplets as separate
controls. This is generally not the case as we avoid a lot of multicollinearity
using the cap. By using the cap we essentially estimate a common [ for all
caplets. Referring to (15), the sampling value Y (1) is

- Fei(Tm1) —w) | Cap(Tr, Te—s, w)
YO=X T h@ T B

5.4.3 Swaps and Zero Coupons

Standard fixed income securities can be used as control variates in the Libor
market models as the yield curve is known. We consider using the swap under-
lying the Bermudan as control variate. Thus we sample

6k (Fk (Tk)i’%) Swa’p(T77+17TEa’%)

Y (1) => P (T, Trt1) BT B0

k=s

We also test a series of zero coupon bonds with maturity dates equal to the
Bermudan option’s set of exercise dates 7 as controls.

P(T A\ Tk7Tk)

Ye(r) = B(r ANTy)

, keT.

Notice that the swap is a portfolio of zero coupon bonds and, hence, the differ-
ence between the two control types is basically that we restrict the 8 parameter
when using a swap as control.

5For upper bound calculations we will use ATM caplets. Thus, when calculating F () we
fix the strike at time ¢ such that the caplet is ATM.
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5.4.4 Approximate Delta-Hedge

The value of any self-financing portfolio discounted with the pricing numeraire
must be a martingale. Hence, we know that the expected value of such a port-
folio is the initial value of the portfolio. As such we can use the payoff from a
portfolio that approximately replicates the option we are trying to value. (see
e.g. Clewlow & Carverhill (1994) for more simple examples).

As a quite general control variate we test a hedge portfolio. More specifically,
we form a portfolio delta hedging the first of the remaining core European
swaptions to expire using the delta implied by the approximate swaption formula
given in Andersen & Andreasen (1998). Hence,

Buelt) = s = B (0y)

where we denote the forward swap rate and the accrual factor by

P(t,Ts) — P (t,T.)

Sse t) = e
’ () Zk:s+1 6k71P(t7Tk)

and .
Bs,e<t) = Z 6k71P(thk)7
k=s+1

respectively. ® denotes the standard normal cumulative density function and

log “LL2=5) 4 362 (1, 7))

K

§(t,Ts)

where £ (t,T5) is the approximative integrated volatility. That is, at time ¢; we
buy

dy (¢,Ts) =

A&e(tj) . Ss,e (tj) R tj < Ts
AjJrl,e(tj) . Sj+1,e (tj) , T < tj < Te

financing it with a short position in the bank account. At the following tenor
date we liquidate the swap position and enter a new, putting the profits or losses
in the bank account. This is done until exercise or maturity.

The drawback of this general approach is that it requires the hedge portfolio
to be updated all along each path, which is computationally expensive. Fur-
thermore, as the hedging errors are decreasing in the number of resettings, and
we only reset at the tenor dates, we do not expect a correlation of the payoff
very close to 1. Numerical tests will show how well this strategy performs.

A more precise hedging strategy would be to take into account the model
dynamics of the swap rate and try to hedge each factor driving the yield curve.
Though, increasing precision should be measured against increases in computa-
tion time.

13



6 Numerical Results

Libor market models cannot be simulated exactly. However, the resulting dis-
cretization biases are manageable and small compared to the variance, as shown
in e.g. Andersen & Andreasen (1998), and are ignored in the following anal-
ysis. The exact simulation schemes have been included in the appendix for
completeness.

6.1 Benchmarking

To be able to compare with the results found in Andersen & Broadie (2001)
we use one of their test scenarios. We start out with a standard log-normal
Libor market model with a quarterly tenor structure and deterministic volatility
corresponding to letting ¢ (z) = z, ¢ = 0 and V(0) = 1 in equation (10). The
initial yield curve is flat 10% and we investigate a two-factor version with the
following deterministic volatility structure.

Ae(t) = (015, 0.15 — \/0.009 - (T, — 1))

To benchmark our model implementation we include Table 1 which replicates
a part of Table 4 presented in Andersen & Broadie (2001).

Table 1: Benchmark Scenario
Ts Te Strike  Lower  Std Low Do Std Do Time

1.00 3.00 0.08 33941 0.24 0.34 0.05 00:01:32
1.00 3.00 0.10 124.82 0.34 0.55 0.07 00:02:29
1.00 3.00 0.12 35.89 0.24 0.44 0.07 00:03:07
1.00 6.00 0.08 749.59 0.55 3.09 0.26 00:11:20
1.00 6.00 0.10 317.10 0.68 4.75 0.32 00:20:29
1.00 6.00 0.12 126.29 0.60 252 0.26 00:26:38
1.00 11.00 0.08  1249.53 1.24 18.87 1.31 01:10:11
1.00 11.00 0.10 620.62 1.19 19.99 1.09 01:57:07
1.00 11.00 0.12 329.89 1.17 1411 0.97 02:27:57

Benchmarking of the lower bound estimates and the duality gaps. Ts denotes the
lock-out period of the Bermudan swaption and 7. is the final swap maturity. Strike
denotes the coupon of the underlying swap. Lower and Std Low are the lower bound
point estimate and it’s standard error found using 50.000 antithetic paths and strategy
1. Do is the point estimate of the duality gap and StdDy it’s standard deviation
based on n = 750 antithetic paths and m = 300 antithetic paths used for "simulation
within the simulation". Time denotes the computation time for the duality gap in
hours:minutes:seconds.

Table 1 contains estimates of the lower bound and the duality gap for a set of
Bermudan swaptions. Even though we have estimated our own exercise barriers
we cannot distinguish the estimates from the ones presented in Andersen &
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Broadie (2001) as the confidence intervals are overlapping. This goes for both
the lower and upper bounds.

6.2 Efficiency Improvement
6.2.1 Caps and caplets as control variates

Figure 1 illustrates the effect of the number of caplets used as control variates
on the standard deviation. In this setup we have sampled the first and the last
possible control and sampled remaining controls equally spaced. We see that
for the 11 nc 1 payer Bermudan swaption, about seven caplet controls, equally
spaced over the exercise period, should be sufficient and that sampling all 40
caplets will not improve the estimation result significantly.

0.98 2.1
0.97 +
T19
0.96 +
c
0.95 + T17 2
s
0.94 + 3
l\lm T 15 g
0.93 + 5
T
c
0.92 + 113 8
2}
0.91 +
11
0.90 +
0.89 f f f f f f f f 0.9

3 4 5 6 7 8 10 12 all
Number of Controls

‘+ ITM R Sqr -+ ATM R Sgr -~ OTM R Sqgr & ITM Std Dev - ATM Std Dev —e- OTM Std Dev‘

Figure 1: Illustration of the effect of the number of caplet control variates on
R? and sample standard deviation for an ITM, ATM and OTM 1-11 Bermudan
payer swaption. 2-dimensional Libor Market Model with deterministic volatility
and using 10,000 simulation paths.

If we were only interested in reducing the standard deviation of the lower
bound estimates, we would include all caplets. However, as we show in the
following section, we also have to take computation time into consideration.
Furthermore, we have to balance the total number controls relative to the num-
ber of paths to avoid multicollinearity as already mentioned in section 5.4.2.
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6.2.2 Testing controls variates

Comparing the efficiency of variance reduction techniques is always difficult, as
they depend on the implementation. However, it is still relevant to compare
particular implementations. In Glynn & Whitt (1992) it is proved that if we
compare two estimators with variances o3 and o3 requiring an expected work
per run of Fw; and Ews, respectively, we should favor the estimator with the
lowest variance scaled with the workload ¢? - Ew;. We denote this product the
efficiency factor EF;.

In Table 2 we test the efficiency on lower bound estimates of different types
of control variates on 6 nc 1 and 11 nc 1 Bermudan swaptions of various strikes.
The table shows the standard deviations and the variances (in basis points)
scaled with the average time per path. We have tested two caplet setups: the
case of 7 caplets and all caplets. As we pointed out in section 6.2.1, using all
caplets might not always be the best choice for cases of long maturity options.

For both the 6 nc 1 and 11 nc 1 Bermudan swaption we see that both
the cap and the series of caplets perform almost equally well for all strikes,
the series of caplets doing slightly better than the cap for the OTM options.
Especially, we note that the more the option is in-the-money, the less efficient
it is to use all caplets compared to only using 7. However, the differences in
the efficiency factor between the caplet types and the cap control variates are
negligible compared to the other types of controls which perform quite poorly
in comparison.

We note that using the cap compared to a series of caplets is easier to apply
in the sense that we do not have to decide how many caplets to use - including
too many or too few caplets may cause the caplet control to be less efficient
than the single cap.

From Table 2 we see that using the self-financing delta hedge strategy results
in a reasonably low standard deviation - yet still not better than the caplets or
single cap - but when taking the computational effort into account it does not
constitute a good control variate. Especially not for out of the money options.

The variance reduction obtained by using the zero coupon bonds and the
swaps is of similar size in all cases. But as the swap uses more computer time,
it is better to use the zero coupon bonds.

As usual the antithetic sampling works better for in the money options as
the payoff function is close to being linear. In Table 3 we present results using
antithetic variates and control variates. We have used 25,000 antithetic paths -
i.e. a total of 50,000 paths - in order to be able to compare table 2 and table 3.
The results are similar to the previous results. The single cap and the caplets
still outperform the other types of controls, and the zero coupon bonds are more
efficient than the swaps.

Comparing table 2 with table 3 we notice that the standard deviations and
efficiency factors given in table 3 are lower than those of table 2 except for the
case of the delta hedge control variate.

We also test the effect of using multiple controls simultaneously. As before
we run tests in a two-factor Libor model using Strategy 1 and 50.000 paths
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Table 2: Efficiency of control variates

Crude MC 6ncl 11ncl
Coupon | cv StdLow EF StdLow EF
0.08 Antithetic 0.5582  0.0804 1.1291 0.8570
0.08 Cap 0.1856  0.0061 0.5182 0.1115
0.08 Caplets 0.1843  0.0057 0.5357 0.1072
0.08 Caplets All 0.1761 0.0063 0.5046  0.1267
0.08 DeltaHedge 0.3240 0.0319 0.7485 0.4055
0.08 None 2.0469 0.6218 3.2819 3.7633
0.08 Swap 0.5254  0.0525 1.1693  0.6760
0.08 Z-Bond 0.5259 0.0453 1.1599  0.5527
0.10 Antithetic 0.6781 0.2146 1.1372 1.7359
0.10 Cap 0.2620 0.0186 0.6314 0.3013
0.10 Caplets 0.2675 0.0191 0.6153 0.2740
0.10 Caplets All 0.2522 0.0189 0.5728 0.2639
0.10 DeltaHedge 0.4982 0.1257 1.0507 1.4600
0.10 None 1.5379 0.5974 2.7992 5.3533
0.10 Swap 0.7379  0.1627 1.4140 1.6782
0.10 Z-Bond 0.7368 0.1467 1.4164 1.4921
0.12 Antithetic 0.6005 0.2111 1.1716  2.7579
0.12 Cap 0.2001  0.0130 0.5102 0.2314
0.12 Caplets 0.1977 0.0128 0.4875 0.2078
0.12 Caplets All 0.1858 0.0121 0.4382 0.1890
0.12 DeltaHedge 0.5185 0.1695 1.2019 2.3707
0.12 None 1.0172 0.3274 2.1852 4.1335
0.12 Swap 0.6499 0.1531 1.3210 1.7828
0.12 Z-Bond 0.6418 0.1371 1.3167 1.6017

This table contains a summary of efficiency rates for the control variates considered
in this paper applied on the 6 nc 1 and 11 nc 1 Bermudan swaptions in the
two-factor deterministic volatility scenario. Coupon is the coupon rate of the
underlying swap. CV is the control variate and std Low denotes the standard
deviation of the lower bound using strategy 1. EF denotes the variance in (bps)
scaled with the average time per path. Low values of EF are preferred. The numbers
were generated using 50,000 paths.
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Table 3: Efficiency of Control Variates with Antithetic Sampling.

Antithetic 6ncl 11 ncl
Coupon | cVv StdLow EF StdLow EF
0.08 Antithetic 0.7910 0.0826 1.6126 0.8883
0.08 Cap 0.1755  0.0050 0.5101 0.1053
0.08 Caplets 0.1544  0.0035 0.4946 0.0874
0.08 Caplets All 0.1441 0.0038 0.4664 0.1001
0.08 DeltaHedge 0.3823  0.0427 0.8422 0.5088
0.08 Swap 0.3681 0.0230 0.9041 0.3736
0.08 Z-Bond 0.3637 0.0188 0.9097 0.3091
0.10 Antithetic 0.9576  0.2166 1.6121 1.7755
0.10 Cap 0.2028 0.0105 0.5427 0.2112
0.10 Caplets 0.2298 0.0131 0.5861 0.2381
0.10 Caplets All 0.2043 0.0115 0.5129 0.2072
0.10 DeltaHedge 0.5256  0.1350 0.9195 1.1137
0.10 Swap 0.7033 0.1363 1.3863 1.5601
0.10 Z-Bond 0.7032 0.1218 1.3981 1.4042
0.12 Antithetic 0.8456 0.2121 1.6562 2.3656
0.12 Cap 0.1892 0.0109 0.4684 0.1974
0.12 Caplets 0.1853 0.0105 0.4489 0.1762
0.12 Caplets All 0.1685 0.0092 0.3979 0.1529
0.12 DeltaHedge 0.4017 0.0968 0.7565 0.9380
0.12 Swap 0.6183 0.1281 1.3616 1.8555
0.12 Z-Bond 0.6182 0.1176 1.3447  1.6409

This table contains a summary of efficiency rates for the control variates considered
in this paper applied on the 6 nc 1 and 11 nc 1 Bermudan swaptions in the
two-factor deterministic volatility scenario. Coupon is the coupon rate of the
underlying swap. CV is the control variate and std Low denotes the standard
deviation of the lower bound using strategy 1. EF denotes the efficiency factor i.e.
the variance in (bps) scaled with the average time per path. Low values of EF are
preferred to high. The numbers were generated using 25,000 (AS) paths.
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(Crude MC). In Table 4 we have listed the 15 most efficient types of control
variates for a 11 nc 1 Bermudan with varying strikes.

We see that the caplet control variate still performs reasonably well com-
pared to using multiple control types, especially for out of-the-money options.
However, using a series of caplets or single cap together with the zero coupon
bond or swap, is more efficient than using only the caplets; except for the out of-
the-money Bermudan swaption, where it is more efficient to use only the caplet
instead of both the caplet and the swap. As expected the zero coupon bond,
together with the cap/caplets, are more efficient than the swap together with
the cap/caplets. The swap, cap and zero coupon also perform well for in- and
at-the-money Bermudans. Finally we point out that the delta hedge control is
far too time consuming compared to the other types of controls.

Table 4: Efficiency of combinations of control variates.

Coupon
0.08 0.10 0.12
Rank | EF cv EF cv EF cv
1 0.0767 ZB+Cap 0.2173 ZB+Cap 0.1821 ZB+Cap
2 0.0833 ZB+CL 0.2378 SW+Cap 0.1885 ZB+CLA
3 0.0898 ZB+SW+Cap | 0.2428 ZB+CL 0.1890 CLA
4 0.0902 SW+Cap 0.2523 ZB4+SW+Cap | 0.1914 ZB+CL
5 0.0962 SW+CL 0.2536 ZB+CLA 0.2033 SW+CLA
6 0.1038 ZB+CLA 0.2639 CLA 0.2078 CL
7 0.1072 CL 0.2678 SW+CL 0.2083 SW+Cap
8 0.1092 SW+CLA 0.2740 CL 0.2116 SW+CL
9 0.1115 Cap 0.2797 SW+CLA 0.2314 Cap
10 0.1169 ZB+SW+CL 0.3013 Cap 0.2443 ZB+4+SW+Cap
11 0.1267 CLA 0.3336 ZB+Cap+DH 0.2641 CL+DH
12 0.1334 ZB+Cap+DH | 0.3339 ZB+SW+CLA | 0.2715 ZB+CLA+DH
13 0.1379 ZB+CL+DH 0.3405 ZB+SW+CL 0.2756  ZB+SW+CL
14 0.1396 SW+Cap+DH | 0.3599 SW+Cap+DH | 0.2838 CLA+DH
15 0.1464 ZB+4+CLA+DH | 0.3633 ZB+CLA+DH | 0.2840 SW+CLA+DH

This table contains the results of test runs using various control variates
simultaneously when pricing a 11 no-call 1 Bermudan swaption for various coupons
of the underlying. To ease the exposition we have ranked the combinations based on
their performance. EF denotes the efficiency factor i.e. the product of variance and
average time per path. CV columns contain the combinations of control variates. We
have used the following abbriviations: ZB=Zero Coupon, SW=Swap, CL=Subsample
of Caplets, CLA=Caplets All and DH=Delta Hedge.

6.3 The Bias of the Upper Bound

Using Jensen’s inequality it is easily shown that the estimator for the duality
gap is upward biased. Andersen & Broadie (2001) do not examine the size and
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Figure 2: The graph shows the results from our estimation of the rate 3 at which
the bias decrease. eps denotes the estimate of the bias and m the number of inner
simulation paths. These results are for the 6-11 years Bermudan swaption for variuos
coupon rates of the underlying swap in the two-factor deterministic volatility scenario.
The strategy used was strategy 1. It also contains simple OLS-regression results for
minus the 8 parameters. For practical applications a 8 = 1 seems to be a reasonable
value.

behavior of the upper bound. This is particularly interesting as we want to
make an efficient choice of the number of inner m and outer paths n, which
is basically a variance-bias trade-off where increases in m decreases bias ¢ and
increasing n decreases variance. We balance these using the mean square error
MSE given by

MSE =¢&*> + Var (D)

In Appendix B we propose an allocation rule of the form that states how to
increase the number of inner paths as we increase outer paths

where [ is the rate of which the bias decreases. We also propose a procedure
that gives an estimate of 8. Basically we run a regression corresponding to
equation (16) in appendix. The output of this procedure is shown in figure 2.
We have tested this method using strategy 1 in the two factor deterministic
volatility scenario using n = 10, 000 antithetic paths and m = 5, 10, 20, 40 and 80
in the regression. For these values of m, the size of the bias is still large relative

20



to the standard deviation. The estimate of the true D is based on n* = 10,000
and m* = 1,280. Figure 2 also shows that the S estimates are close to 1. This
means that when we double the number of outer paths we should only increase
the number of inner paths with a factor of v/2.

6.4 Testing Strategies

So far we have only used the simple exercise strategy 1. To test the implica-
tions of this we now take a further look at the more complicated strategies 2-5.
When using these strategies we have to estimate the value of the remaining core
European swaptions at each possible exercise time. This is done using an ap-
proximative European swaption formula found in Andersen & Andreasen (1998)
(see e.g. Brace & Musiela (1997)).

Andersen (2000) demonstrated that strategy 1 works well for most Bermu-
dan swaptions across several scenarios of the economy. Short options on long
swaps in the multifactor model, were the only cases where the more complicated
strategies really picked up additional value. Our tests show the same and for
that reason we concentrate on the 11 nc 1 Bermudan swaption in the two-factor
Libor market model with deterministic volatility. Computations are based on
50,000 AV paths and to reduce sample standard deviation we use the forward
starting cap, covering the same period as the swaption, as a control variate.

Several interesting observations can be made from Table 5. First of all, the
enhanced strategies do pick up additional value with a maximum of 12 basis
points for the at-the-money swaption. Secondly, strategy 3 results in increased
lower bounds compared to strategy 2, but is also slower to compute. This
is due to the fact that all core European swaptions have to be computed in
order to determine whether to exercise or not, whereas calculations of the core
swaptions in strategy 2 should be skipped as soon as one is more valuable than
intrinsic value. This effect is very pronounced in the out of-the-money case
where calculation times are significantly different.

One possible explanation as to why strategy 3 picks up additional value
could be that the barrier Hs (¢;) in strategy 3 could be interpreted as the value
of the deferred exercise premium at the exercise boundary. Remember that
we are searching for the Hj (t;) that would make intrinsic value equal to the
continuation value, X (¢;) = Hs(t;) + M (t;). In strategies 1 and 2 the barrier
should approximate the sum H(t;) + M (t;) instead of just part of it. Further-
more, since the early/deferred exercise value goes to zero when the option is
deep in- or out of-the-money this might be easier to approximate. This could
indicate that in cases where we have good approximations for European core
options, the parametrization of exercise strategies should be formulated in the
early/deferred exercise values rather than just testing on the European value as
in strategy 2.

Strategies 4 and 5 result in prices which are not significantly lower than
those implied by strategies 2 and 3, respectively, confirming our initial expecta-
tions. However, computational savings are significant, especially for the options
with long exercise periods which are also the options that would benefit from
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Table 5: Performance of strategies 1-5

Coupon | Strategy Low Pickup Time Relative
bps bps min : sec Time
0.08 1 1248.3 (0.4) 00:59 1.0
0.08 2 1251.0 (0.4) 2.7 19:01 19.3
0.08 3 1255.5 (0.4) 7.2 29:26 29.9
0.08 4 1251.8 (0.4) 3.5 01:11 1.2
0.08 5 1254.9 (0.3) 6.6 01:13 1.2
0.10 1 622.5 (0.4) 01:43 1.0
0.10 2 628.9 (0.4) 6.4 16:37 9.7
0.10 3 635.1 (0.3) 12.6 35:14 20.5
0.10 4 628.7 (0.4) 6.2 01:59 1.2
0.10 5 635.4 (0.3) 12.9 01:59 1.2
0.12 1 320.8 (0.3) 02:05 1.0
0.12 2 334.4 (0.3) 46 07:42 3.7
0.12 3 338.2 (0.3) 8.4 21:52 10.5
0.12 4 334.9 (0.3) 5.1 02:15 1.1
0.12 5 338.9 (0.3) 9.1 02:17 1.1

This table summarize the results of a test run of exercise strategies 1 to 5. It
contains lower bound estimates, standard deviation and main simulation times for
the 11 no call 1 Bermudan swaptions for various coupons. 50,000 antithetic paths
and the cap as control variate was used in the simulation. Time is presented as
minutes:seconds. The pickup from using the advanced strategies relative to the
simple strategy 1 is included as well as the computation time relative to strategy 1.
The strategies where estimated using 50,000 antithetic paths.

22



enhancement of the simple strategy. These savings do not only stem from the
lower number of swaptions, but also the particular choice of swaptions. Re-
member that short maturity swaptions are much cheaper to evaluate than long
maturity swaptions as we need to integrate the volatility to the expiry of the
option.

Strategy 4 and strategy 5 are only about 20% slower than strategy 1 and
much faster than strategies 2 and 3. The computation times for strategy 4 range
from 6% to 29% of strategy 2 and as little as 4% to 10% for strategy 5 compared
to strategy 3. These numbers would be even lower if we included computation
time used in the presimulation.

The conclusion is quite clear. For Bermudan swaptions with many exercise
times strategy 5 is preferred, as the additional computational cost is low while
the lower bounds are as high as the ones from strategy 3.

6.5 Price sensitivity to the estimated barrier

We have tested the sensitivity of the exercise barrier on the upper and lower
bound estimates. This is done by scaling the exercise barrier by a constant «
and then computing lower and upper bound estimates. Noting here that scaling
the barrier only changes the level of the barrier not the shape. The results are
plotted in figure 3 for various values of «. Interestingly, the lower bound seems
to be more sensitive to the barrier scaling factor than the upper bound.

Again, tests have been performed in the two factor deterministic volatility
scenario using exercise strategy 1. The Bermudan swaption is a 1 into 6 year
with a coupon of 10%.

6.6 Upper Bound Calculations

We are now ready to compute the duality gaps and upper bound estimates.
However, as our computational results are virtually identical to the findings in
Andersen & Broadie (2001), we will mainly focus on the simplified strategies
4 and 5 as well as the effect of control variates on the estimation of the upper
bound. There is, however, only minor discrepancy between our results and
Andersen & Broadie (2001)’s results that we must dwell on. They find that
application of strategy 3 in the two factor deterministic volatility scenario will
generate duality gaps all within 4 bps. We cannot support this finding for the 11
nc 1 Bermudan swaptions. It is only a minor discrepancy but for completeness
we report our results in Table 6. The reductions in the duality gap from applying
strategy 3 is not that dramatic. Notice that strategy 5 performs just as well as
strategy 3 as we cannot reject that they are the same. Furthermore strategy 5
is much faster.

As the primal-dual simulation algorithm is computationally demanding it
calls for the application of efficiency improvement. We have tested the effect
of control variates on the estimate of the duality gap. These results are pre-
sented in Table 7. It appears that the duality gaps are reduced at a reasonable
computational cost.
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Table 6: Duality gaps in the two-factor scenario.

11ncl Coupon
Strategy 0.08 0.10 0.12
1 18.9 (1.3) 20.0 (1.1) 14.1 (1.0)
2 13.5 (0.8) 13.5 (0.7) 9.7 (0.6)
3 8.4 (0.5) 6.8 (0.4) 3.4 (0.3)
4 13.1 (0.8) 14.0 (0.7) 7.8 (0.5)
5 8.8 (0.5) 6.5 (0.4) 3.9 (0.3)

Duality gaps for the 11 no-call 1 Bermudan swaption for different strategies and
coupons in the two factor deterministic volatility scenario. The numbers have been
computed using n = 750 and m = 300 in the primal-dual simulation algorithm.

Table 7: Effect of control variate on duality gaps.

cVv None Cap Reduc Increase

T. Coupon 150 Time ﬁg ap Time | [)0 Time
3 0.08 | 0.19 (0.02) 00:33 | 0.09 (0.01) 00:45 53% 39%
3 0.10 | 0.24 (0.02) 00:44 | 0.11 (0.01) 00:53 54% 21%
3 0.12 | 0.30 (0.04) 00:48 | 0.22 (0.03) 00:54 27% 13%
6 0.08 | 2.15(0.13) 03:58 | 0.88 (0.06) 05:15 59% 32%
6 0.10 1.99 (0.12) 06:04 | 0.89 (0.06) 06:54 55% 14%
6 0.12 | 0.99 (0.09) 07:09 | 0.43 (0.05) 07:41 57% 7%
11 0.08 | 14.17 (0.52) 23:15 | 7.63 (0.30) 28:03 46% 21%
11 0.10 | 11.96 (0.42) 34:50 | 6.71 (0.27) 38:40 44% 11%
11 0.12 | 6.38 (0.30) 41:50 | 3.96 (0.18) 44:36 38% 7%

The effect on the duality gaps when we use the cap as control variate and strategy 5.
Numbers are from the two factor deterministic volatility scenario computed using

n = 1500 and m = 40 antithetic paths in the primal-dual simulation algorithm. All
Bermudan Swaptions have a lockout period of one 1 year.
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Figure 3: Illustration of the sensitivity to the excercise strategy. The figure shows
the lower and upper bound for an ATM, 6-year Bermudan swaption with a 1- year
lockout period as we scale the excercise barrier. The example is the deterministic
volatility scenario using exercise strategy 1.

Notice that we have changed the relative amount of work used in the inner
and outer computations relative to the previous calculations. This is due to the
analysis in section 6.3. Particularly when combined with the control variate the
estimates of the lower bound are not significantly different from the ones pre-
sented in e.g. table 6, but the standard deviations are lower and the calculation
takes only about one third of the previous computations.

Tests have also been performed using several control variates in the inner
loop, however remember that we determine the variance by minimizing 8 from
OLS regression, so we have experienced problems due to the small number of
inner loops.

6.7 Stochastic Volatility

In this section we investigate the effect of stochastic interest rate volatility on
the size of the duality gap. The parameters in our test case have been taken
from a scenario in Andersen & Brotherton-Ratcliffe (2001): 6y = 1, ky =
1, ey = 1.4 and ¥ (z) = 275,

We test whether the simple exercise strategy 1 still performs well when the
forward curve dynamics exhibit stochastic volatility. This is done by examining
the duality gap for various parameters in the variance of volatility process.
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Notice that lower bounds are not comparable as the volatility of the forward
rates varies as we vary the parameters. What could be a problem for the simple
exercise strategy is that it does not distinguish whether the current volatility
V; is higher or lower than the long term mean. So a priori we would expect
that the duality gap increases as the volatility of the variance process increases
or when the mean reversion rate decreases. By estimating duality gaps we are
able to asses the average present value loss that swaption holders incur from
ignoring this feature of the yield curve dynamics.

The results in Tables 8 and 9 confirm these a priori expectations. We have
calculated the duality gap for a 6-year contract with 1-year lockout for various
coupon rates of the underlying swap. Strategy 1 is reestimated using 50,000
(AS) paths in the presimulation for each value of the volatility parameter ey .
Based on our observations in section 6.2.2, we apply the zero coupon bonds as a
control variate to reduce the variance, as no closed form solutions for caps and
swaptions are available”, and we use n = 1,500 and m = 300 antithetic paths
in the main simulation algorithm.
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Figure 4:

As expected, higher volatility of the variance process increases the duality
gap as the simple strategy fails to incorporate the volatility aspect in the exercise

SLongstaff et al. (2001b) argue that capturing the exact dynamics of the yield curve is very
important for Bermduan swaptions.

"The approximations for European caps and swaptions given by Andersen & Brotherton-
Ratcliffe (2001) are extremely precise and would likely be applicable as control variates as the
bias would be very low relative to the variance. However, this remains to be investigated.
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Table 8: Stochastic volatility - volatility of variance.

Coupon ey Lower StdLow Do Std Do

0.08 0.25 750.03 1.50 3.76  0.22
0.08 0.50 751.24 1.58 4.16 0.23
0.08 0.75 748.41 1.56 447 0.24
0.08 1.00 749.87 1.73 5.87 0.35
0.08 1.40 74776 1.73 7.15 0.47
0.08 1.50 74711 1.74 8.21 049
0.08 1.75 755.15 2.01 8.38 045
0.10 0.25 31753 2.98 4.82 0.24
0.10 0.50 313.46 3.02 5.58 0.25
0.10 0.75 311.03 3.17 6.70 0.31
0.10 1.00 311.30 3.33 8.45 0.38
0.10 1.40 314.03 3.42 10.92  0.56
0.10 1.50 309.74 3.58 11.30  0.50
0.10 1.75 326.87 3.99 12.99 0.62
0.12 0.25 12410 2.43 2.58 0.20
0.12 0.50 132.74 2.77 2.94 0.19
0.12 0.75 123.18 2.63 4.10 0.21
0.12 1.00 124.22 2.89 4.17 0.26
0.12 1.40 122.64 2.90 5.33 0.31
0.12 1.50 131.23 3.19 5.82  0.39
0.12 1.75 143.53 3.42 6.92 0.42

This table illustrates the degree of inoptimality of the strategy 1. The contracts are 6
year contracts with 1 year lock out for three degrees of moneyness. As the volatility
of the variance process ey increases the duality cap Do increases as well.

The basic scenario is the two-factor libor market model with a variance of the
volatility process with the following initial value and parameters: V(0) =0y =1,

ky =1, ¢Y(x) = 2%, All zero coupon bonds were used as control variates for

n = 1500 antithetic and m = 300. Barriers were estimated using 50,000 (AS) paths.
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decision. The same conclusion holds for the speed of mean reversion in the
variance process. Higher mean reversion keeps the process closer to the long
term mean.

Table 9: Stochastic volatility - mean reversion in variance.

Coupon Ky Lower StdLow lA)O Stdﬁo

0.08 0.25 747.04 1.86 10.74 0.63

0.08 0.50 746.35 1.78 8.19 0.47

0.08 0.75 745.32 1.54 6.79 0.38

0.08 1.00 748.51 1.65 6.07 0.35

0.08 1.25 750.67 1.71 4.92 0.28

0.10 0.25 296.62 3.73 15.19 0.67

0.10 0.50 300.01 3.39 10.91 0.56

0.10 0.75 300.93 3.25 8.81 0.39

0.10 1.00 311.72 3.22 7.21 0.34

0.10 1.25 314.11 3.24 7.44 0.35

0.12 0.25 121.17 3.25 7.82 0.48

0.12 0.50 123.35 3.08 6.92 0.45

0.12 0.75 117.58 2.87 4.73 0.30

0.12 1.00 122.46 2.85 4.45 0.30

0.12 1.25 125.58 2.72 3.50 0.23
This table illustrates the degree of inoptimality of the strategy 1. The contracts are
6-year contracts with 1-year lock out for three degrees of moneyness. As the mean
reversion of the variance process ey increases the duality cap Do decreases.
The basic scenario is the two-factor libor market model with a variance of the
volatility process with the following initial value and parameters: V(0) =0y =1,
ev = 1.4, ¥(z) = %7, All zero coupon bonds were used as control variates for
n = 1500 antithetic and m = 300. Barriers were estimated using 50,000 (AS) paths.

The sizes of the duality gaps are not very large even for rather extreme values
of the parameters in the volatility process, but still economically significant.
As already mentioned, Andersen & Brotherton-Ratcliffe (2001) provide very
accurate approximations for European caps and swaptions that could be used
to enhance strategy 1 to 5. Alternatively, one could use the Least-Square Monte
Carlo approach of Longstaff & Schwartz (2001) including the current level of
the variance process in the basis functions. As a final test we have implemented
the LS-MC method following Bjerregaard Pedersen (1999). He concludes that
a simple specification including a constant the first two powers of the intrinsic
value and bankbook as well as the cross product in the regressions gave good
results. We denote this strategy LS1. To account for stochastic volatility in
the basis function we furthermore include the level of the variance process V; in
strategy LS 2. Table 10 illustrates that the Andersen approach performs slightly
better than the LS1 approach. As expected the LS 2 strategy is superior to
the other two as it picks up additional value using information in the variance
level.
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7 Conclusion

This paper has addressed the issue of pricing Bermudan swaptions in a Libor
market model. A control variate technique especially tailored for American
options, which was recently proposed in Rasmussen (2002), was implemented
and tested in the Libor market model. Furthermore, we demonstrated how to
handle dividend paying control variates, and a range of controls were tested in
the Bermudan swaption case. The results were reasonable showing reductions
in standard deviations in the order of 3 to 5. The combination of the zero
coupon bonds and caplets underlying the swaption performed well for a range
of Bermudan swaptions.

A simplification of the strategies proposed in Andersen (2000) was demon-
strated to give equally lower bounds at a significantly smaller computational
effort. In particular, for the strategy resulting in the highest lower bounds the
computation times were reduced to between 4% and 10% depending on money-
ness of the option.

We also demonstrated the effect of the control variate technique on the
duality gap from the Andersen & Broadie (2001) Primal-Dual algorithm, by
applying the control variate technique in the nested simulations. The results
showed significant improvements. However, we still note that the Primal-Dual
algorithm is not suited for real time work. Still, it is extremely important due to
the generality and reasonable computational effort. In particular it will enable
us to determine when strategies are ”good enough” so that we can use the lower
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Table 10: Least-Square MC vs. Andersen approach under stochastic volatility.

Strategy 1 LS 1 LS 2
T, T. Coupon Lower Time Lower Time Lower Time
I 6 008 7504 (0.3)  0:14 | 746.7 (0.4)  0:16 | 751.2 (0.4)  0:16
1 6 010 313.2 (0.6)  0:27 | 311.3(0.7)  0:29 | 3157 (0.7)  0:29
1 6 012 130.8 (0.6)  0:33 | 1285 (0.6)  0:34 | 132.1 (0.6)  0:34
1 11 008 | 1245.0(0.8)  0:39 | 1237.9 (0.9)  0:48 | 1246.8 (0.9)  0:48
1 11 0.10 616.9 (1.2) 1.7 | 617.9 (1.4)  1:25 | 624.2 (1.4)  1:23
1 11 0.12 335.4 (1.1) 1:36 335.5 (1.2) 1:40 341.0 (1.2) 1:39

This table contains a simple comparison of the Andersen and the Least-Square
approach. Strategy LS 1 incorporates the intrinsic value of the underlying swap and
the bankbook. LS 2 furthermore incorporates the current level of the variance
process V;. Lower denotes the lower bound estimate. Time is calculation time in
minutes and seconds. Numbers are based on 50,0000 AS paths with zero coupon
bonds as controls in a two factor model with stochastic volatility. The strategies
were estimated using 5,000 AS paths.

bound.

When setting up the Primal-Dual simulation algorithm one faces a variance-
bias trade off. Our tests indicated that one should only increase the number of
nested paths (reducing bias) with v/2 when doubling the number of outer paths
(reducing variance).

Finally, we considered an extended Libor market model with stochastic
volatility developed in Andersen & Brotherton-Ratcliffe (2001), and demon-
strate that this will increase the duality gap and make the enhanced strategies
necessary also for short Bermudan swaptions. The Least-Square MC proposed
in Longstaff & Schwartz (2001) was found to be a good substitute in case of
stochastic volatility.
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A Simulation

The simulation of the Libor market model is carried out under the measure Q.
We apply simple log Euler Schemes to (10) on a simulation time grid 0 < ¢ <
ty < -+ <try1 = Tr+1. It is not necessary that the time grid is and the LIBOR
maturity structure Ty < 71 < --- < Tk 41 are the same, but we will require that
{To,T1,..., T11} C {to,t1,...,tr41} i.e. that the tenor dates are among the
simulated dates. Thus we simulate the following

Futtin) = Bt (6 SEEL V) (ae)a + VEE) )
exp (%Ak () (2L ) Ve )" m) ,

where t; 11 —t; = A;. For simplicity we will only use equally spaced tenor space
and simulation grid where 6 = A.So far our mapping function n (t), used in the
drift term (12), has been defined as left continuous.

So far this has not been a problem as in the continuous time setup this is
without importance - for the obvious reasons this is not the case for the discrete
time setup. Andersen & Andreasen (1998) argue that even though we operate
with a left continuous mapping function in continuous time, we should use a
right continuous mapping function in discrete time.

The V process in (11) is simulated using a Gaussian Ornstein-Uhlenbeck
process proposed in Andersen & Brotherton-Ratcliffe (2001). We run n; steps
within each interval [t;, ;1] such that t; =t + 7 - (tip1 —t;)/ms j=1,..,1n;

V(t]qu) = ev—l—(V(ﬁj) - HV) e—ﬁv(tj+1—tj)+zigv¢ (V(tl)) \/%KV (1 _ 672fiv(tj+17tj)).

B Bias Variance Trade-off

Let D(n,m) = .7, X! denote the point estimate for D using n inner simu-
lations and m nested simulations. Assume that the estimator is consistent but
biased

E (ﬁm) =D,, = D for m — oo.

We assume that the bias decreases with rate 8 as a function of m as

B
Dm—D%b-<i) .
m

The expected time T (m) per path using m inner simulations is assumed to be
T(m)=c-m".

In our simulation experiment it is easy to realize that n = 1.
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What we are looking for is an allocation rule. To determine n for a given m
we postulate the following rule

n(m) = aT (m)* = ac® - m""

and use the estimator R R
D(m) = D(n(m), m).

The variance obtained using this rule

D(m)) = Im
Var ( (m)) (m)’
if we assume that o2, — o2 for m — oo.
Given all these assumptions we let
. . 2
MSE (D (m)) - (D (m) — D) + Var (D)
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So what we need to balance is

—26:—an@a:2é.
n

This means that doubling the number of inner paths m we have
n(m) oc m?*M = m?.

Hence, we have to estimate the rate 8 at which the bias decreases.
We propose the following procedure. First observe that

A _ o
D(n,m)—D=b-m ﬁ—l—\/—%zn, zn ~ N (0,1).

As we don’t know D, we provide an estimate of this based on relatively high
values of n and m say n* and m*. Hence. the following equation gives a biased
but consistent estimate of the bias using m inner paths given that n, n* and m*
are high.

Em = D (TL, m) - D (n*a m*)

o _ o
~ bom P+ L, — b (mF) P+ S
n

Vi Vi "

= b-mP—¢

n
emtel = b-mP
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Assuming that the right side is positive (we can always increase n,n*and m* to
ensure this) we take logarithms and apply a first order Taylor expansion to get

In(e;) + ELE:; ~ In (b) — Sln(m). (16)

m

Now we can get a rough estimate of 8 by regression.
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Abstract

In this paper we examine the cost of using recalibrated single-factor
models to determine the exercise strategy for Bermudan swaptions in a
multi-factor world. We demonstrate that single-factor exercise strategies
applied in a multi-factor world only give rise to economically insignificant
losses. Furthermore, we find that the conditional model risk as defined
in Longstaff, Santa-Clara & Schwartz (2001), is statistically insignificant
given the number of observations. Additional tests using the Primal-Dual
algorithm of Andersen & Broadie (2001) indicate that losses found in
Longstaff et al. (2001) cannot as claimed be ascribed to the number of
factors. Finally we find that for valuation of Bermudan swaptions with
long exercise periods, the simple approach proposed in Andersen (2000)
is outperformed by the Least Square Monte Carlo method of Longstaff &
Schwartz (2001) and, surprisingly, also by the exercise strategies from the
single-factor models.

JEL classification: C52; E43; EAT; G12; G13;
Keywords: Bermudan swaption; American option; Least Square Monte
Carlo; Libor Market Model; Model Risk; Model Calibration

1 Introduction

The notional amount of the contracts in the OTC market for interest rate deriva-
tives contracts has been growing rapidly to an estimated $90 trillion. Of these

*The author acknowledges comments and suggestions from Tom Engsted, Svend Jakobsen,
Malene S. Jensen, Nicki S. Rasmussen and Sgren Willemann. This research is supported by
ScanRate Financial Systems.



interest rate swaps is by far the largest single group with outstanding contracts
of $68 trillion followed by interest rate options with $12.5 trillion. The total
market value is estimated to be $2.5 trillion®.

As discussed in e.g. Green & Figlewski (1999) the public is usually buying
options leaving the dealer community with an overall short position. Several
sources of risk have been identified in relation to derivatives trading, and in
particular model risk? has been accentuated as the nominal amounts and com-
plexity of derivative contracts have increased. As a consequence of this, the
vast majority of the literature has been focusing on the choice of interest rate
derivative models in relation to the hedging and valuation performance from
the option writers view?.

Another important aspect of model risk is faced by holders of American
style options. By choosing a particular model, holders implicitly define their
exercise strategy, but as stressed in Longstaff et al. (2001, p.43) "...in an efficient
market, an American option is only worth its market value to an investor who
follows the optimal strategy”. The expected present value of the cash flow from
an American option is therefore less than the market value if anything but
the optimal strategy is followed. The quantitative effect of using a slightly
suboptimal exercise strategy is likely to differ from asset to asset, but it is
important to stress that the quality of an exercise strategy can be measured
in terms of the expected discounted cash flow obtained by following it. Better
strategies lead to higher expected present values.

In this paper we concentrate on one of the most liquid American style interest
rate derivatives, namely Bermudan swaptions. Recent studies by Longstaff et al.
(2001) and Andersen & Andreasen (2001) have come to opposite conclusions
about the significance of using slightly suboptimal exercise strategies in the
market for Bermudan swaptions, and we therefore take these two papers as a
starting point for a closer analysis.

In Longstaff et al. (2001) it is argued that the present value losses from using
suboptimal exercise strategies are economically significant for swaption holders
even if they are within bid /ask spreads, as they could have been avoided by using
better strategies. In particular, they claim that the Wall Street practice of using
the exercise strategies from single-factor models continuously recalibrated to
market information, costs the holders of Bermudan swaptions billions of dollars
as a whole. Furthermore, they argue that the present value cost conditional
on making the wrong exercise decision is substantial and constitutes a new
dimension to the potential effects of model risk. These conclusions are based
on an extensive simulation experiment designed to replicate the Wall Street
practice.

Contrary to Longstaff et al. (2001), the study by Andersen & Andreasen

IThe estimates are based on the November 2002 press release from the Bank for Interna-
tional Settlements.

2See also Rebonato (n.d.a) for a good discussion of model risk.

3See e.g. Biihler, Uhrig-Homburg, Walter & Weber (1999), Green & Figlewski (1999), Hull
& Suo (2001), Collin-Dufresne & Goldstein (2002), Driessen, Klaassen & Melenberg (2000),
Gupta & Subrahmanyam (2002), Rebonato (n.d.a) etc.



(2001) argues that using exercise strategies derived from a best fit single-factor
model only results in insignificant losses and provides a good mark-to-market of
the Bermudan prices. Furthermore, they find that single-factor models, when
calibrated appropriately to the prices of caps and European swaptions from a
two-factor model, give Bermudan swaption prices that are slightly higher than
those from the two-factor models.

Both these papers use simulation based valuation techniques in order to
estimate the lower bounds for the true value of the Bermudan swaptions. How-
ever, they apply two different approaches for estimating the optimal exercise
strategy. Longstaff et al. (2001) use the Least Square Monte Carlo technique
by Longstaff & Schwartz (2001) (LSM), while Andersen & Andreasen (2001)
apply the "simple approach" by Andersen (2000) (LAM).

In this paper we merge the approaches taken in these papers into a unified
framework in order to facilitate a direct comparison. As the benchmark multi-
factor model we set up a four-factor log-normal Libor market model based on a
principal component analysis of the Euro forward-rate curve.

We start out by estimating the true Bermudan swaption values in this model
using both the LAM and LSM exercise strategies. Interestingly, we find that
the LAM strategy is outperformed by the LSM strategy, in particular when
the exercise period is long. Furthermore, using the Primal-Dual algorithm by
Andersen & Broadie (2001), we are able to conclude that the LSM strategies
are in fact very close to being optimal.

Having established benchmark model prices for the Bermudan swaptions, we
set up three different single-factor interest rate models including one spot-rate
model (Black, Derman & Toy (1990)) and two forward-rate models within the
Heath, Jarrow & Morton (1992) class (Ritchken & Sankarasubramanian (1995),
Andreasen (2000)).

Using these we construct a total of six different single-factor exercise strate-
gies and use these to compute lower bounds on a set of Bermudan swaptions.
The application of efficiency improvement techniques allows us to give reason-
ably precise estimates. For three of these single-factor exercise strategies the
lower bounds are virtually identical to the LSM values, leading us to conclude
that losses from following exercise strategies from recalibrated single-factor mod-
els in the Bermudan swaptions market, are insignificant and economically irrele-
vant. This corresponds closely to the findings by Andersen & Andreasen (2001),
but we stress that we have controlled for the optimality of the LSM strategy.

Turning to the conditional present value losses documented by Longstaff
et al. (2001), we repeat the exact same simulation procedure but using our single-
factor models. The best performing single-factor models perform reasonably
well and the corresponding conditional losses relative to the LSM strategy are
both negative and positive. More importantly, the losses are not significantly
different from zero when using the same number of paths as in Longstaff et al.
(2001). No standard errors on the loss estimates have been reported in Longstaff
et al. (2001), but we find crude Monte Carlo estimation to be too inaccurate
to conclude anything due to the sizes of the standard errors. The conditional
losses are not examined by Andersen & Andreasen (2001).



We therefore test one single-factor exercise strategy in the Dual-Primal al-
gorithm of Andersen & Broadie (2001), which is extremely slow due to the com-
bination of nested simulations and computationally costly exercise decisions. In
particular, we find that the upper bounds for the potential losses are very small
and often lower than those from the full LSM approach.

This paper is organized as follows. First, we fix some notation regarding
Bermudan swaptions. Secondly, we go through the simulation methodology and
the benchmark multi-factor model. Then the exercise strategies are described
in more detail and the ways to assess the true Bermudan prices are discussed.
This is followed by a short outline of the single-factor models as well as their
numerical implementation and calibration. All this lead us to the numerical
results and finally we make our conclusions.

2 Notation and definitions

A forward swap is a standard financial contract where two parties agree to
exchange a fixed coupon for a floating rate over a period of time. When pay-
ing/receiving fixed for floating this is termed a Payer/Receiver swap. Let ¢
and t. denote the forward starting date and the final maturity of the swap.
Usually the first payment in the swap is fixed on ts; and paid on t51; and the
last payment is fixed at time ¢._; and paid at time t.. If we let P (¢,T) denote
the time t value of a discount bond with maturity 7, then the time ¢ value of a
payer swap with coupon 6 is

e—1
See(t) =P (t,ts) = P(tte) =0 P(ttig1) (tigs —ti), t <t

A standard payer Bermudan swaption BS, . gives the holder the right, but
not the obligation, to enter into the forward payer swap with a final maturity
t. and a coupon 6, on a set of times tg,...,t._1. As t exceeds tenor times we
adjust the formula by only summing remaining payments. For this purpose we
define n (t) to be the mapping from a time into the swap’s next reset time after
t, e tuey <t <tnu

e—1
See(t) =P (ttnw) = P(tite) =0 Y P(ttisa) (tigr — 1), t <te.

i=n(t)

That is, the intrinsic value X; at an exercise time is max (Sn(t))e (t),O) .
This intrinsic value is exactly the value of the European swaption ES,, ). (1)
of the swap. In this paper we define the Bermudan premium as the difference
between the Bermudan swaption and the first to mature European swaption.

We make the standard assumptions of no arbitrage and complete and fric-

tionless markets defined on a probability space (Q, {Fthiso ,IP’) , where {F;}

is a filtration and P the physical measure. Let Q denote the pricing measure



induced by the numeraire asset 8 with the associated conditional expectation
EQ(-|F;). The problem of pricing Bermudan swaptions is basically an optimal
stopping problem,

BS, . (t) = sup E© (&XT
TeD(t) /87'

7). 1)

where T (t) is the set of all F-optional stopping times taking values in the set
of exercise times from time ¢ and on.

As should be well known (see e.g. Duffie (1996)), American style options
should only be exercised when the intrinsic value X; exceeds the continuation
value of the option BS}_ (t), which defines the optimal exercise time

= tgl?f<t (X:, > BST, (t:)) - (2)

Bermudan swaptions are in effect the right to choose between different swaps

at different points in time. These core swap rates are the forward starting swap

rates SR; e, © = S,..,e — 1 with same final maturity ¢. as the swap in question.

According to the literature (e.g. Andreasen (2000), Rebonato (2000)), it is not

enough to know the right terminal distributions for the swap rates involved.

An important part of pricing Bermudan swaptions is to have the right term-
correlation (see appendix A.2) structure of the core swap rates.

3 Methodology

In this section we briefly summarize the simulation approach used by Longstaff
et al. (2001) to investigate the effect of single-factor exercise strategies in a multi-
factor world. They emphasize that even if various models have been calibrated
to match a set of market prices from a multi-factor world perfectly, their implied
exercise strategies will still be suboptimal.

The basic procedure goes like this. First, simulate a path from the multi-
factor model to the first exercise date of the Bermudan swaption. Compute
the yield curve and the European swaption prices from the benchmark model.
Calibrate the single-factor model to this "market" information. Now, if exercise
is implied by the single-factor model, we receive the discounted payoff from the
benchmark model. If not, we advance the simulation to the next exercise date
and so on until the Bermudan swaption has either been exercised or has expired.
The expected present value loss is the difference between the average discounted
payoff received by following a suboptimal exercise strategy and the discounted
payoff received by following the optimal exercise strategy.

4 The benchmark multi-factor model

We choose as benchmark model a multi-factor log-normal Libor market model
defined on a fixed tenor grid of 0.50 years. The Libor market models of Mil-



tersen, Sandmann & Sondermann (1997), Brace & Musiela (1997) and Jamshid-
ian (1997) have become increasingly popular among practitioners, in particular
because they provide closed form solutions for both caps and European swap-
tions (though not in the same model). The reason for choosing a different
benchmark model than Longstaff et al. (2001) is that the string model (see e.g.
Santa-Clara & Sornette (2001)) applied in their analysis does not have closed
form solutions for caps and European swaptions. In order to do the calibration
of their one-factor models to the string model, they use the prices of ATM Eu-
ropean swaptions extracted from an LSM regression. Although asymptotically
unbiased, the size of the standard errors of these price estimates are also of
importance but they are not reported in their study. In particular these price
estimates are input to the calibration of the single-factor models and they could
in principle distort the entire calibration. Therefore we use a Libor market
model which does not involve such problems due to the existence of accurate
approximations for the prices of European swaptions.

In the Libor market model the fundamental state variables are the discretely
compounded forward-rates Fy (¢), k = 0, .., K corresponding to a given tenor
structure tg < tg + 9 < tg + 20 < .. < tg. The dynamics of the forward rates
under the spot Libor measure Q (see Jamshidian (1997)) can be written as

dFy, (t) = p(t, F (8)) dt + Fy, (t) A () - dWR, k=1, .., K, (3)

where p (¢, F' (t)) is a function of the entire forward rate curve and constructed
to ensure no arbitrage. W2 is an n-dimensional Wiener process and \y, (£) is a
n—dimensional vector of the factor loadings of Fy, (t) on the Wiener process at
time ¢. Notice that the dimension of the state variable is K, which could easily
be as high as 120, when the last payment time is 30 year and there are quarterly
payments.

4.1 Estimation of the benchmark model

We set up the benchmark model using the historical covariance matrix H of the
percentage changes in the forward rates. This matrix can be written as

H=VTAYV,

where A is a diagonal matrix of the eigenvalues (which are positive) and V' the
matrix of eigenvectors. We follow Longstaff et al. (2001) who make the identi-
fying assumption that the implied covariance matrix 3 used in the swaptions
market is

»=vVToy,

where ¥ is a diagonal matrix of implied eigenvalues. This implicitly means
that the factors that generate the historical covariance matrix also generate the
implied covariance matrix, and if desired we could calibrate the model to match
market quoted European swaptions on a given day using the diagonal in ¥ as
free parameters. However, for the purpose of this study there is no need to
match the implied swaptions volatilities on a particular date.



The historical covariance matrix used in this paper is estimated from daily
changes in the forward Libor rates. The forward rates are calculated from yield
curves estimated daily on a sample consisting of 3-month and 1-year EURIBOR
and EUR swap rates using a cubic spline method*. The sample covers the period
from Jan. 4th, 1999 to Oct. 3rd, 2002 which corresponds to 942 trade dates
with observations on all 6 month forward Libor rates from 0.5 to 30 year. To
reduce the data input we only include forward rates with maturities of 0.5, 1,
1.5,....; 5, 6, 7, 10, 15, 20, 25 and 30 year. It is well known that even if the
covariance matrix has full rank, it is common that a relatively low number of
factors are needed to describe the main part of the variance (e.g. Littermann
& Scheinkman (1991)). Hence, if one chooses to use an n—factor model it is
easily done by setting the remaining entries in the diagonal of ¥ equal to zero.
Doing a principal component analysis on the covariance matrix estimated on
the full sample, we find that the first factor explains 71% of the total variance,
the second 13%, the third 7% and the fourth 5%. That is, the first four factors
account for 96% of the total variation. The results from performing the same
test on sub-samples consisting of the individual years, are similar to that of the
full sample regarding both the explained fractions as well as the shape of the
factors. We have included the factor loadings in the Appendix A.3. For forward
rates not in the sample we interpolate linearly between the factor loadings.

For the test scenarios, the initial forward rates are set to 5 percent using
discrete compounding. With these assumptions we are able to compute a matrix
of implied swaption volatilities from the Benchmark model using the Andersen
& Andreasen (2000) approximate swaption formula. As this matrix is input to
the calibration procedure of the single-factor models, we present it in Table 1.

Table 1: Initial implied ATM swaption volatilites in the Benchmark model

Swaption Swap Tenor
Expiry 1 2 3 4 5 7 10

05160 184 189 179 16.7 15.1 13.8

1.0 181 198 194 181 16.8 152 139

2.0 205 204 192 17.7 16.5 15.0 13.8

3.0120.2 195 181 16.8 158 14.5 135

4.0 19.2 183 17.1 16.0 15.1 14.0 13.1

5.0 | 182 174 164 153 146 13.6 129

7.0 16.7 16.1 152 144 13.8 13.1 125

100 | 154 149 142 13.6 13.2 126 123

This table contains the initial implied volatilities for ATM European swaptions
computed from the Benchmark model. Swaption Expiry denotes expiry of the
swaption in years and Swap Tenor denotes the maturity of the underlying swap.
Thus, a 2 into 5 year swaption is a 2 year option on a 5 year swap, so the final
payment from the swap is in 7 years. The payment frequency of the swaps is
semi-annual.

4Thanks to Peer Roer Pedersen, Jyske Bank for delivering the yield curve information.



4.2 Finding the true Bermudan values

In order to estimate the losses from following the exercise strategy from single-
factor models in a multi-factor world, we need to have good estimates of the true
value of the Bermudan swaption. We have implemented two of the most popular
methods to find tight lower bounds for American options in a simulation model.
These are the non-parametric "simple approach" proposed in Andersen (2000)
(LAM) and the Least Squares Monte Carlo approach by Longstaff & Schwartz
(2001) (LSM). Exercise strategies from these two approaches are used as input
to a Dual-Primal simulation algorithm developed in Andersen & Broadie (2001)
resulting in tight 95%-confidence intervals for the true value given that the
strategies are close to being optimal.

Without going into detail about the Primal-Dual simulation algorithms by
Andersen & Broadie (2001) (see also Haugh & Kogan (2001)), we here shortly
discuss the relation to the present value losses. The main idea in these papers is
to express the primal problem of (1) as a corresponding dual problem. Andersen
& Broadie (2001) show that

. XS
BSs.(t) = H;f (m + B2 [Isnea?}'( (ﬁ_b - Ws)]) )

where the infimum is taken over all {F;} adapted Q-martingales. They prove
that the martingale component of the discounted Bermudan swaption price
(which is supermartingale) is a solution, and they construct an approximation
to this process for a given exercise strategy 7. In that way the duality gap A

=28 [ (5 - 7)

works as a price measure of the suboptimality of the strategy 7. In fact, it
measures the average worst case error along all paths given that we follow a
suboptimal strategy 7. However, the analysis is slightly complicated by the fact
that the estimate of A; will be upward biased if the construction of 7] requires
nested simulations. Hence, we are only able to construct conservative estimates
of the present value losses from following single-factor models using this method.
Finally, it is important to stress that the duality gap is zero when the optimal
strategy is used.

5 Exercise strategies

We start by listing the exercise strategies considered in this paper. First, we
let a stopping time 7* be defined as the first time an exercise indicator function
I' (t) signals exercise,
f=inf (I'(t) =1
T Ter (' () =1),
where 7 is the set of possible exercise times, typically s, ...,e — 1. The exercise
indicator functions are in general allowed to be functions of the state variables.



Those considered here are all based on some form of approximation of the con-
tinuation value of the Bermudan swaption BSJ‘-; (tj) entering the definition of
the optimal strategy in (2).

5.1 Barrier approach (LAM)

This is the preferred strategy from Andersen (2000), though with a minor modi-
fication. Andersen (2000) uses the maximal value of the still alive core European
swaptions, but Jensen & Svenstrup (2002) show that it is much more compu-
tationally efficient to only use the first to expire, and there are no significant

present value losses®.

pant oy _ [ 1 Sje(t)T > ESji1e () +b(t))
4 ) = { | Sy a

Here the so-called barrier function b (-) is a real deterministic functions Rt —
R*. In words the strategy is to exercise the first time the intrinsic value exceeds
the sum of the European swaption maturing at the next exercise time and a
constant barrier. Notice, that the barrier b could be interpreted as the Bermudan
premium.

5.2 Least Square Monte Carlo approach (LSM)

The LSM approach of Longstaff & Schwartz (2001) consists of approximating the
continuation value by a linear function of conditioning variables, Y;, computed
from a d;—vector Z; of state variables

BSj,_e (tZ) o, Yt“ tieT.

Here Y; = g; (Z;), where g; (-) is a vector function from R%* — R™ and ay is
an n;—parameter vector. So the exercise indicator in the LSM case is

sm o,y 1 Sie(t)t > ap, -V
reve) ={ oYy )
Following Longstaff et al. (2001), we use the values of the core swaps as the
state vector Z;, and for the transformation g; we use the first three powers of
the elements in Z; and the cross products of the values between the current swap
and forward swaps up to degree three. The parameter vectors a; are estimated
using OLS as proposed in Longstaff & Schwartz (2001)°.

5We also tested the full strategy using the maximal value, and the results where virtually
identical.

6In the numerical implementation we use singular value decomposition for the sake of
computational stability (see e.g. Press, Flannery, Teukolsky & Vetterling (1989)).



5.3 Single-factor approach

Another way of estimating the continuation value is to use a more simple model,
for example the single-factor models we present in the next section. For each
of these single-factor models, now indicated with an asterisk, we define two
exercise strategies by the following exercise indicators.

The most simple is based purely on the continuation value

oy 1 S (t)" >BS: (¢t
I (tj)—{ 0 7, (J) e J+1, (J) ,

and simply signals exercise when the intrinsic value is larger than the contin-
uation value in the simple model. This type of strategy we will denote with a
subscript V for value based.

We also test a strategy where the next to mature core European swap-
tion observed in the market works as a form of control variate. If, for some
reason, the simple model does not match this European swaption, we suggest
basing the exercise decision on the Bermudan premium estimate BP},, , (t;) =
BSY, . (tj) — ES7 . (t;) instead,

1 Sje(t;)" > ESji1e () + BP . (t))
0 else

re )= {

These strategies will be denoted with a subscript P for Premium based.

6 Single-factor interest rate models

The single-factor models we test in this study are the Black et al. (1990) short-
rate model and two single-factor forward-rate models belonging to the Heath
et al. (1992) class. In particular, we make sure that these are low-dimensional
Markov models such that they can be implemented in a lattice. The BDT model
is one of the single-factor models tested in Longstaff et al. (2001).

6.1 The Black, Derman & Toy model

The Black et al. (1990) (BDT') model is probably one of the most applied as well
as one of the most severely criticized interest rate models. In the continuous
time version of the model, the dynamics for the short rate . can be expressed
as

oppr ()

dlnr(t) = p(t) + ==-+<1nr(t) | dt + oppr (t) dZ;.

oppr (1)
We implement the model in a binomial tree using the forward induction algo-
rithm described in Jamshidian (1991) to calibrate to the yield curve. One of
the major drawbacks of this model is the lack of "real" mean reversion, and
in order to match implied volatilities the volatility function will have to be de-
creasing o’z o (t) < 0. This will effectively mean that the volatility disappears

10



as time passes. We implement the BDT-tree with a volatility specification of
oppr (t) = a+bexp (—ct) and calibrate it to the initial prices of the European
swaptions from the benchmark model using a brute-force search algorithm min-
imizing the relative squared price errors. The fit is not particularly satisfying
with a root mean square error of 19.9%. However as we are interested in testing
the degree of suboptimality, this further adds strength to the test. The param-
eter values found are a = 13.8%, b = 14.7% and ¢ = 23.4%. Notice that these
parameters will give rise to highly non-stationary short rate dynamics, as the
volatility function is very steep.

6.2 A class of single-factor low dimensional Heath, Jarrow
& Morton models

In this section we briefly go through a class of single-factor Heath, Jarrow &
Morton models. We consider two particular parametrizations of the model, that
will allow us to value Bermudan swaptions by solving a two-dimensional partial
differential equation. The model derivation is included in order to explain the
calibration procedure for the second version of the model. The two versions will
be denoted RS and AN respectively.

Heath et al. (1992) show that under the risk neutral measure Q the dynamics
of the continuously compounded forward rates f; (T') must satisfy the equation

t T t
f:(T) = fo (T)—i—/O o(s,T)/ a(s,u)duds+/0 o (s, T)dWE, Vt<T. (6)

In this setting W2 is a one dimensional wiener process under Q and o (¢, T) is
the instantaneous volatility function. In this paper we consider the class treated
in e.g. Ritchken & Sankarasubramanian (1995), where the forward volatility is
of the form

o(t,T)=g(T)h. (7)
g (+) is a deterministic function and h; is some possibly stochastic process. Sub-
stituting this into (6) we get the following

(7)

T
fe(T) = fo(T)+ % (a:t + Y19 (t)fl/t g(s) dS) ; (8)

where x; and y; are two state variables
t t t
T, = g(t)/ hf./ g(u)duds+g(t)/ hedW2
0 s 0
t t t
g(t)/ hi/ g (u) duds—i—/ o (s,t)dW2,
0 s 0
t t t
Y = g(t)Q/ hzds:/ (hsg () ds:/ o(s,t)? ds.
0 0 0
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By applying Leibnitz’ rule the dynamics of the state variables can be seen to be

Ty = g(t)$t+yt dt + g (t) hydW,",

and

dy; = (299/((;) ye+g(t)? h?) dt.

Let k(t) = —¢' (t) /g (t) and let n, = g (t) hy denote the volatility process
of state variable x;. If we let the n, be a function of only the state variables
z¢, Yy and time ¢, we have a two-dimensional Markov system. That is, let n, =
g (@) h(t,z, Yy) , then

de, = (—kzy+ye)dt+n,dW2
dyy = (17? — 2/£yt) dt.
Notice from equation (8) that the spot rate is r = f; (t) = fo (t) + x;. From

this it follows that the short rate evolves like

b 0
dry = — fo (t) dt + dzy = (—mzt + vyt + == fo (t)) dt +n,dW2.

oT or

A closed form solution for zero coupon bonds in this model can be proved
to be

2
P(0,T) T _ 1 T e
P((t.T) = ’ _ [ w(u)du g = / S s(u)du
(t,T) P 0.0 exp :Et/t e ds 2yt< t e
P (0,7) 1 )
= P00 exp ( x:G (¢, T) 2th (t,T) ) .

In our implementation we assume that the mean reversion function « (¢) is
constant, which implies that g (t) = e™** and G (t,T) = < [1 — e~ *T=9] .

Finally, under the usual conditions the Feynman-Kac theorem directly im-
plies that the value function V (¢, 2, y;) of any interest derivate solves the fol-
lowing 2-dimensional partial differential equation (PDE)

VN 9 1,20 e 5N O

0 = 8tv+{ 7+ ( mx+y)ax+2n 8x2+(n %y)c‘?y %4 9)
I R Y I PR}
= 8tv+{ o (—RT ty) 5o+ 50 8x2]V+{(n 2ky) 9 V.

This PDE is solved using a Craig & Sneyd split scheme described in An-
dreasen (2000), which is unconditionally stable and less prone to spurious oscil-
lations, than the ordinary alternating direction implicit (ADI) scheme. Spurious
oscillations are possible due to the lack of diffusion in the y-state variable.

12



6.2.1 Definition and Calibration - RS

First, we consider a simple, but time stationary, version within this class of
models. We denote it RS as this version is often referred to as the Ritchken &
Sankarasubramanian (1995) model. It is contructed by setting 7, = or;] such
that

o (t,T) =cge " T ¢, (10)

Unfortunately, we do not have closed form solutions for either caps or Euro-
pean swaptions in this version of the model, so we have chosen only to recali-
brate the model initially, and as such using this model will only result in upper
bounds on the losses. However, the benchmark model is also time stationary, so
we expect that the volatility parameters extracted by calibrating to European
swaptions are not varying much over time.

As we work with a log-normal Libor market model we let v = 1. As shown
in Heath et al. (1992) the forward rate volatility function should be bounded
in order to be valid. However, as there are no closed form solutions for interest
rate derivatives, and as the zero coupon prices are independent of the volatility
function, we are free to switch to e.g a constant volatility at some cutoff level.
To represent a simple time stationary model we make an initial brute force
calibration of the two parameters on a sample of ATM European swaptions with
maturities of 0.5, 1, 2, 3, 4, 5, 7 and 10 years written on swaps with maturities
of 1, 2, 3, 4, 5, 7 and 10 years, a total of 56 swaptions. The objective in the
optimization is equally weighted squared relative price errors. The optimal spot
rate volatility found is o = 23.1% and the mean reversion parameter x = 8.3%.
Using only these two parameters we get a reasonable fit with a root mean square
price error of 5.6%. The maximal percentage error is 21% which is due to the
0.5 into 1 year swaption that the model is unable to match. In general this
model is incapable of producing a volatility hump like the one observed in the
benchmark model”.

6.2.2 Definition and Calibration - AN

This version of the model follows Andreasen (2000) and is accommodated to
the pricing of Bermudan swaptions. Calibration is done individually for each of
the Bermudan swaptions to the set of core European swaptions. It is a two-step
procedure consisting of a separate calibration of the mean reversion level to fit
the term correlation of the core swaptions, and after that a bootstrap of the
variance structure of the underlying core European swaptions.

The volatility specification defining model AN, when pricing a T, no-call T}
Bermudan swaption, is given by

Ny =« (t) SRn(t),e (t>’y 3 t<te_1 (11)

"Rithcken & Chuang (1999) suggest another version that allows humped volatilities but in
a three state Markov system. In our experience, this hump is not particularly important for
the valuation of long swaptions.
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where « (t) is a time dependent parameter vector and SR, ), the par swap
rate corresponding to the next core swap. This means that the dynamics of the
par swap rate under the k, e-swap measure Qe (see e.g. Jamshidian (1997)) is
OSR,
ASRye (t) = ——2= (1), dWH, t < ty,.
oz
The first step in the Andreasen (2000) calibration procedure is to approxi-
mate the term-correlation structure of the SRy, ,,(t) and SRy p(s) forward swap
rates by

corr (SRy n(t), SRy p(s)) =~ corr(z(t),z(s))

fg exp (2 [, k(v)dv) du
Jy exp (2 [y K(v)dv) du

1— —2kt

and calibrate this to the term-correlation structure of the benchmark Libor
market model using a constant k mean reversion function.
The second step utilizes the variance structure approximation

Varkn (SRun(8) > | (%m)nm)f du,

Ox 2=0,y=0

which we can bootstrap to match the variance structure from the implied volatil-
ities 0?)6 of the core European swaptions for j =s,..,e — 1

J ti /OSR. 2
Za?SRi,n(O)QQ /t ( 8;*6 (u)) du:aieSRjye(o)%j.

i—1 x=0,y=0
Here
O5R.. y _ sh.. (1) | 2PGGEtPELIGEL) | 20T
O s,e P(t,ts)—P(t,te) i 5,P(tt)

j=s+1

Andreasen (2000) shows that when using this procedure the model matches
the prices and skew of Bermudan swaption prices obtained in a Libor market
using the LA approach.

We calibrate the term-correlation by running a one dimensional optimization
over Kk, where the objective is to minimize the squared absolute differences in
the two term-correlation approximations. Figure 1 illustrates that we are able
to match the term-correlations of the core swaptions. It should be noted that
for very short swaptions the optimal mean reversion is sometimes negative,
which of course is unacceptable. However, this usually happens when the term-
correlation approximation in (12) is almost insensitive to the mean reversion
k, and we therefore choose to set the mean reversion to some minimal value of

k= 0.5%.
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Figure 1: This figure shows an example of the calibrated term-correlations for a
10ncl Bermudan swaption. On the first axis we have the forward times ¢ of the
core swap rates. The full lines are the approximations to the term-correlations
between core swap rates starting at time 1.5, 4.0 and 7.0 in the benchmark
model. The dotted lines are the fitted values in the single-factor AN model.

7 Numerical results

7.1 Simulation Setup

The computation of the expectation in equation (1) is done by Monte Carlo
combined with various efficiency improvement techniques. The simulation is
done by simulating a log-Euler discretized version of the forward rate dynamics
in (3), see for example Andersen & Andreasen (2000).

Due to the high number of single-factor valuations required in order to make
the exercise decisions, we are extremely interested in keeping the number of sim-
ulation paths as low as possible. To improve the efficiency we use both antithetic
variables and control variates. While implementation of antithetic variables is
straightforward, the control variate setup is more involved for Bermudan swap-
tions. We apply the Rasmussen (2002) technique for American options which
consists of sampling the value of the controls at the exercise time. Jensen &
Svenstrup (2002) demonstrate how to implement it with dividend paying assets.
For Bermudan swaptions it was found that a combination of zero coupon bonds
a cap control variates performed well across moneyness as well as maturities
of both expiry and swap tenor. Both the LAM and the LSM approach require
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a presimulation of paths in order to determine the parameters in the exercise
decision. Unless otherwise is stated we have used 25,000 antithetic paths (total
of 50,000) for the presimulations. The pricing algorithms use another 250,000
antithetic paths (total of 500,000) to find the present values of the cash flow.
Combined with the control variates the standard deviations of these estimates
will be fairly small (around 0.1 bp).

7.2 Upper bounds for the Bermudan swaption values

In order to estimate the present value losses from following various exercise
strategies, tight upper bounds for the real prices are required. Table 2 contains
the lower bound estimates from both the LAM and the LMS exercise strategies
as well as 95% confidence intervals for the true price. Notice that the upper
bound is upward biased due to the effect of nested simulations in the dual-primal
simulation algorithm. We should therefore not expect to be able to match them
exactly. The duality gap Dy has been estimated using 1,500 antithetic paths in
the outer loop and 300 antithetic paths in the inner loop, and to minimize the
bias we have also used control variates (see e.g. Andersen & Broadie (2001)).

Table 2: Price estimates and 95% confidence intervals

Low Bound Duality Gap Upper CI 95%

te te 0 LEsM Ly | APSM | AJAM | LSM LAM

1 10 4% 767.4 (0.1) 762.7 (0.1) | 0.5 (0.0 5.9 (0.2) 768.1 769.0

1 10 5% 394.5 (0.1) 391.1 (0.1) | 0.7 (0.1) 3.2 (0.2) 395.4 394.6

1 10 6% 205.9 (0.1) 204.2 (0.1) | 0.2 (0.0) 1.7 0.1) 206.4 206.2

3 10 4% 626.4 (0.1) 624.7 (0.1) | 0.6 (0.0) 2.4 (0.1 627.2 627.3

3 10 5% 355.6 (0.1) 354.2 (0.1) | 0.5 (0.0 1.9 (0.1 356.3 356.3

3 10 6% 196.7 (0.1) 195.9 (0.1) | 0.4 (0.0) 0.7 (0.1 197.2 196.8

6 10 4% 359.7 (0.0) 359.8 (0.0) | 0.3 (0.0) 0.2 (0.0) 360.0 360.1

6 10 5% 222.8 (0.0) 222.9 ©0.0) | 0.2 (0.0) 0.2 (0.0 223.1 223.2

6 10 6% 135.1 (0.0) 135.1 0.0y | 0.2 (0.0) 0.2 (0.0 135.4 135.3

1 15 4% | 1080.1 (0.1) | 1069.1 (0.1) | 1.4 0.1y | 15.1 05y | 1081.7  1085.2

1 15 5% 578.2 (0.1) 570.8 (0.2) | 1.4 (0.1 8.6 (0.3) 579.9 580.1

1 15 6% 318.0 (0.2) 315.4 0.2) | 0.9 (0.1) 4.2 (0.2 319.3 320.2
ts, te and 6 denote the lock out period, the final maturity and the coupon of the
swaption. L& and LA™ denote the lower bound estimates from the Least Square

Monte Carlo and the Andersen method, respectively. Both exercise strategies have
been estimated using 25,000 AS paths in the presimulation and the price estimates are
based on 250,0000 AS paths and control variates sampled using the Rasmussen (2002)
method. The table also contains the estimated duality gaps as well as the upper end
of the corresponding 95% confidence interval. All prices are in basis points.

The results in Table 2 demonstrate that the LAM exercise strategy generates

slightly lower bounds than the LSM method. However, the duality gaps A are
still fairly small with a maximum of 15 basis points. The duality gaps for the
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LSM method are very small indicating that this strategy is very close to being
optimal. The table contains the upper limits in a conservative 95% confidence
interval for the true prices based on the upward biased duality gaps.

It is particularly interesting that the LAM method fails to pick up the last
basis points for the Bermudan swaptions with long exercise periods. These
findings illustrate the importance of the primal-dual algorithm of Andersen &
Broadie (2001) as it will allow us to detect exercise strategies that are far from
being optimal.

Finally, these results could in principle invalidate some of the conclusions
made in Andersen & Andreasen (2001) regarding the lower prices in their two-
factor model than in their single-factor model (on page 26 they report the num-
bers one to five basis points). To test that these differences could not be ascribed
to the suboptimality of their two-factor exercise strategy, we have reconstructed
their Table 6 but using the LSM exercise strategy®. The differences now de-
crease to about one to three basis points. It is hard to say whether differences
of this size support their claim that prices are decreasing in the number of yield
curve factors and not just due to different model dynamics. On the other hand
it only adds strength to their claim that a single-factor model can be brought
to replicate the values from a two-factor model.

7.3 Swaption values in the single-factor models

To provide some intuition about the fit of the single-factor models in this paper,
we present Table 3, which shows the "market" prices from the Libor market
model for a range of European swaptions. It also includes the prices of the
Bermudan and European swaptions computed at time zero using the single-
factor models fitted to the Libor market model as described above. Finally, the
Bermudan exercise premiums are included.

The European swaption prices indicate how well the single factor models
fit the Libor market model. In fact, as already noted, the BDT model’s fit is
quite poor, in particular for OTM swaptions. The fit of the time stationary RS
model is reasonable, but not perfect either. The AN model has a very nice fit
to European swaption prices due to the calibration and especially when the lock
out period is short. However, we see that the fit for the European swaptions de-
teriorate slightly as the lock out period ¢, increases. This is probably due to the
approximations in the bootstrap calibration, where we keep the state variables
fixed, and it suggests that for long European swaptions a better approximation
should be used for a really tight mark-to-market?. However, for the application
in this paper this should not be an issue, as we continuously recalibrate this
version once the lock out period is over. Of course this is also a concern for the
remaining core swaptions, but again a slack in the calibration is just another
drawback for the single-factor model.

8Table is not included - but is available from the author upon request.
9For example, one could try computing the approximation keeping only & = 0, as y is
locally deterministic it could be approximated using the forward curve.
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Table 3: Initial swaption prices from the single-factor models.

LM BDT RS AN
ts te 0O EU BS EU PRE BS EU PRE BS EU PRE
1 10 4% | 6940 | s08.6 7154  93.2 7807 6983 82.3 763.8 6937 70.2
1 10 5% | 1939 | 4367 2553 1814 | 4185 21s.4 2001 | 369.6  191.9  177.7
1 10 6% 25.3 234.3 64.0  170.3 | 232.1 447 1874 | 1735 25.6  147.9
3 10 4% | 561.4 | 6445 5930 515 630.3  566.9  63.4 615.2  557.2  58.0
3 10 5% | 2512 | 3770 3017 753 370.7 2734 973 332.6  246.0  86.7
3 10 6% 93.8 2146 138.2 764 218.0  121.8  96.2 170.4 90.7 79.7
6 10 4% | 337.4 | 361.6 3486 13.0 359.1  337.6  21.5 347.0 3277 194
6 10 5% | 1922 | 2248 2076 17.2 228.3  200.6  27.7 2047 179.3 254
6 10 6% | 1038 | 1363 1186 17.6 1452 1179 273 116.5 91.9 24.6
1 15 4% | 960.4 | 11414 9818  159.6 | 1092.1  960.7  131.5 | 1068.7  960.2  108.5
1 15 5% | 248.7 | 646.6  325.6  321.1 | 602.6  263.2  339.5 | 544.6  246.9  297.7
1 15 6% 25.7 366.1 704 295.6 | 349.7 417 3081 | 2819 264 2555

This table contains the prices in basis points of a set of Bermudan payer swaptions
from the single factor models considered. ts, te and € denote the lock out period, the
final swap payment and swap coupon. LM denotes the benchmark 4-factor Libor
Market model, BDT the Black, Derman and Toy, RS the single-factor Rithcken &
Sankarasubramanian model and AN the Andreasen model. BS and EU denote the
value of the Bermudan and European swaption respectively, while PRE is the
Bermudan exercise premium.

Figure 2: Initial percentage errors in the Bermudan values from the single-factor
models
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Illustration of the initial percentage errors of the single-factor forward-rate models
RS and AN. Interestingly the model with the best fit to the European swaptions has
larger price errors for the Bermudan swaptions.
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7.4 Losses from following single factor exercise strategies

Having described the benchmark model, the three-single factor models, as well
as their calibration and exercise strategies, we present the results from the full
simulation algorithm. Due to the computationally demanding procedure we keep
the number of paths relatively low. We use 4,000 antithetic paths combined with
the control variates already described.

The results presented in Table 4 confirm the findings in Andersen & An-
dreasen (2001). As the 95% confidence intervals overlap with the LSM estimates
it is hard to be very precise about the exact sizes of the losses (or gains) from
following single-factor exercise strategies. But the bounds we are able to put on
the losses are extremely small for most of the single-factor models. As expected,
the Black et al. (1990) model has the worst performance, and overall the prices
are lower than the LSM values. The performance of the single-factor forward-
rate models, on the other hand, is comparable to that of the LSM approach. All
single factor models perform better than the LAM approach. Overall, standard
errors are at most of the order of a single basis point - but nothing indicates
that the single-factor model’s values are systematically below the LSM prices.
Notice that these standard errors error actually are quite small due to the con-
trol variates. To obtain a similar precision with outcontrol variates we would
roughly need 50,000 antithetic paths (100,000 total). So, even with 50,000 anti-
thetic paths we cannot reject that the losses from following single-factor exercise
strategies are zero for the best performing single-factor models.

Even if the losses cannot be distinguished from zero it is interesting to study
their relative performance a little closer, as there appears to be systematic
differences. In figure 3 we have computed the loss measured relative to the
Bermudan premium. Notice that these estimates are much more affected by the
sampling error and are to be considered with caution, but still they indicate
that there are systematic differences in the relative performance of the models.
In the paper of Longstaff et al. (2001) a set of common paths is used to compute
these numbers. If we make the same comparison measuring the losses relative
to the total contract value, instead of just the Bermudan premium, the maximal
loss is only 0.03%.

Figure 3 illustrates that on an overall basis the exercise strategies using the
Bermudan premium, combined with the observed value of the first to expire core
European swaption, is performing slightly better than the value based exercise
strategies. In some way this approach works as a simple form of calibration to
the first to mature European swaption.

7.5 Conditional present value costs

In this section we present the results in terms of the conditional present value
costs as defined in Longstaff et al. (2001). The basic idea is to compare the
expected losses on a common set of paths, where the single-factor strategies
differ from the LSM strategy. Their argument is that we should measure the
strategies where the exercise decision is a tough call, and focus more on the
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Table 4: Comparison of single-factor exercise strategies

LSM Single — factor exercise strategies

ts e 0 BDTy BDTP| RSy RSp | ANy ANp
1 10 4% 767.4 766.3 765.1 765.7 767.0 767.6 766.9
(0.1) (0.5) (0.6) (0.6) (0.5) (0.5) (0.5)
1 10 5% 394.5 392.4 394.2 392.6 393.6 393.7 395.7
(0.1) (0.7) (0.7) (0.8) (0.7) (0.7) (0.7)
1 10 6% 205.9 205.2 206.4 204.2 205.5 205.4 207.0
(0.1) (0.8) (0.8) (0.8) (0.8) (0.8) (0.8)
3 10 4% 626.4 625.5 625.9 625.4 626.2 626.3 626.0
(0.1) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4)
3 10 5% 355.6 354.9 355.8 354.1 356.0 355.9 356.3
(0.1) (0.5) (0.6) (0.6) (0.6) (0.5) (0.5)
3 10 6% 196.7 196.3 196.8 194.7 196.0 196.5 196.8
(0.1) (0.6) (0.7) (0.7) (0.7) (0.7) (0.7)
6 10 4% 359.7 358.1 359.6 359.6 359.9 359.6 359.9
(0.0) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)
6 10 5% 222.8 221.5 222.3 222.5 222.8 222.7 222.8
(0.0) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)
6 10 6% 135.1 134.0 135.2 136.0 135.3 135.6 135.1
(0.0) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3)
1 15 4% | 1080.1 1079.8 1073.0 | 1079.4 1080.0 | 1078.0 1079.3
(0.1) (0.8) (0.9) (0.9) (0.8) (0.8) (0.8)
1 15 5% 578.2 575.6 571.3 577.1 577.3 578.1 577.4
(0.1) (1.2) (1.2) (1.2) (1.2) (1.2) (1.2)
1 15 6% 318.0 314.6 318.6 318.8 318.7 316.4 320.6
(0.2) (1.2) (1.2) (1.2) (1.2) (1.2) (1.2)
This table contains the results from the simulation approach. For a set of Bermudan

swaptions we report the present value of the cash flows received by following the
optimal strategy and exercise strategies from the described single-factor models. t,
te and 0 denote the lock out time, the time of the swap maturity and coupon. LSM
denotes the Least square strategy, which we have shown to be close to optimal. BDT),
RS and AN denote the single-factor exercise strategies and subscripts V' and P denote
whether they are based on the Bermudan Value or Bermudan Premium plus observed
European swaption. Numbers in parentheses are standard deviations. All present
values are in basis points. The LSM values are based on 25,000 AS paths in the
presimulation and 250,000 AS paths combined with control variates. The single-factor
prices are based on 4,000 AS paths and control variates.
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Figure 3: Losses relative to the Bermudan premium
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This figure plots estimates of the losses for the various single-factor exercise
strategies. Percentage errors have been computed relative to the Bermudan exercise
premium.




net present values on the paths, where we make "wrong" exercise decisions. So
far our results have supported the findings in Andersen & Andreasen (2001).
However, they did not investigate conditional present value costs.

Following Longstaff et al. (2001) we consider the conditional present value
loss when the single-factor models signal exercise later/earlier than LSM,

, X Xoi
PVL,, =EY < e [ TLSM) :

ﬂTLSM 67’77
and X X
i T+LSM i i S
PVLy, = EY (B pvialy ol U Tt M) :

When we define these expectations we implicitly assume that we are not
conditioning on null sets. We could easily define a stopping time 7 for which
one of these is undefined. Furthermore, computing these by simulation can
also give rise to problems, especially when the strategies in question are very
similar, as the number of observations will be low. This effect is particularly
unfortunate as we are bound to keep the number of paths low. 5,000 paths
were used to estimate the conditional present value losses, and the results are
presented in Tables 5 (similar tables for the other models have been included in
Appendix A.4). Notice that these tables include the standard deviations of the
loss estimates which are not reported by Longstaff et al. (2001). Furthermore, all
losses reported by Longstaff et al. (2001) are negative, which we would interpret
as gains.

In Table 5 we have reported the summary statistics for the exercise strategies
ANy and LSM in the multi-factor Libor market model. Columns four and five
show that the number of exercises using the single-factor model is very close
to the number using the LSM from the multi-factor model. The percentage of
paths where the two models signal that it is optimal to exercise at the same time,
is ranging from 88.3% to 94.6%, which is not particularly impressing. Despite
this, present value losses associated with these differences, presented in the last
columus, are overall not different from zero on a 95% level of significance. Fur-
thermore, the signs of the losses are negative as well as positive across different
swaptions. We therefore conclude that we cannot reject that the single-factor
model performs just as well as the LSM strategy based on these estimates. Sim-
ilar tables for the other single-factor models have been included in Appendix
A.4. Not all of these perform as well as the AN models and particularly the
BDT models perfom worse than the others, which is somehow what we expected
given the poor dynamics and the poor initial fit to the European swaptions. On
an overall basis the standard errors of the conditional loss estimates are very
large.

In our opinion these results merely illustrate that this way of estimating the
conditional present value loss is not very precise. The number of paths required
in order to obtain an accuracy that would enable us to say somthing meaningful
about present value losses using this approach, would require practically months
of CPU time (at least in our implementation).
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Table 5: Comparison of the single-factor AN and four-factor Libor market model
exercise strategies

Probability Single-factor Exercises
Swaption of Exercise % Same Early Late
ts te O | LSM ANy | Early time Late | Loss Std | Loss Std
1 10 4% | 89.9 89.5 4.3 88.3 74 -19  (14) 30 (18)
1 10 5% | 68.6 68.0 5.3 90.2 4.5 5 (11) 3 (21
1 10 6% | 46.1 45.6 3.9 93.8 24 17 (11) 24 (23)
3 10 4% | 84.7 84.5 6.6 91.9 1.6 -1 (8) -33  (22)
3 10 5% | 639 63.8 5.8 91.8 2.4 -2 (10) 13 (18)
3 10 6% | 46.7 461 | 40 931 29 | -15 (11) 7 (20)
6 10 4% | 78.0 78.1 9.5 89.0 1.6 -10 (6) 20 (10)
6 10 5% | 584 58.0 5.5 92.9 1.7 -11 (6) 5 9)
6 10 6% | 415 413 | 42 946 1.2 4 )| 17 (11)
1 15 4% | 89.8 89.9 5.6 90.0 4.3 -19  (14) 4 (26)
1 15 5% | 705 70.0 6.9 88.4 4.7 -23 (13) 12 (24)
1 15 6% | 530 522 | 40 911 49 2 (12) | 10 (24)

This table reports summary statistics for the single-factor exercise strategy and the
Least Square Monte Carlo exercise strategy in the multi-factor Libor market model.
Probability of Exercise represents the total percentage of paths for which the
swaption is exercised. Also the percentage of paths where the single-factor models
signals exercise earlier, at the same time, or later than the multi-factor model are
included. The present value losses of exercising when the single-factor model implies
it is optimal at an earlier time than the four-factor model is the difference between
the immediate value of exercise and the present value of cash flows generated by
following the multi-factor strategy, averaged over all paths where the single-factor
implies exercise earlier than. Similarly, for the present value loss of exercising when
the single-factor model implies that exercise is optimal at a later time than the
four-factor model. All costs are expressed in basis points. Values are based on 5,000
simulated paths of the term structure.
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We have considered the application of various efficiency improvement tech-
niques (see e.g. Boyle, Brodie & Glasserman (1997)), but it is not straight
forward to come up with a good solution. Antithetic sampling only works well
when the sampled variables are negatively correlated given two "mirror" paths.
But in this case there is no reason to believe that any differences in the con-
ditional losses for two mirror paths are highly negatively correlated. Further-
more, in order to apply the control variate technique, we are required to find
some stochastic variable that is highly correlated with the loss conditional on
the exercise strategies differing, and with a first moment we can compute. Such
a stochastic variable is not likely to exist.

7.6 Assessing the suboptimality using the primal-dual al-
gorithm

In order to provide more precise estimates of the conditional present value losses
we compute the duality gap for the RSp single-factor model using the dual-
primal algorithm. Testing the single-factor exercise strategies using this algo-
rithm is a huge computational task, due to the combination of nested simulations
and an exercise strategy that requires us to solve a 2-dimensional PDE. There-
fore, we are forced to keep the simulation paths for the dual-primal algorithm
low. Computation time is also the reason as to why we do not test the AN
exercise strategies even though these performed better in the previous tests.

Before commenting on the results we stress again that these estimates are in
fact upward biased due to the relative low number of paths, which is also seen
by comparing with the results in table 2.

The results in Table 6 demonstrate that given the same number of paths in
the primal-dual simulation algorithm, the RSp single-factor exercise strategy
generally outperforms the multi-factor LSM approach.

Even if we use the upper end of a conservative 95% confidence interval for the
losses and measure relative to the Bermudan exercise premium (which is much
smaller than the total Bermudan value) we are still far from the percentage losses
reported in Longstaff et al. (2001). The duality gaps have also been illustrated
in Figure 4.

8 Discussion

Longstaff et al. (2001) stress the importance of studying single- versus multi-
factor models in the correct way, namely by comparing the received cash flows
in the true model by using only the exercise decisions from single-factor models.
The ability of a single-factor model to match the caps and European swaptions
from a multi-factor model by calibration does not necessarily mean that the
exercise decision for Bermudan swaptions computed within such a model is
optimal.

As our results show, even for the worst performing single-factor exercise
strategy, the expected losses are very limited.
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Table 6: Comparison of the duality gap for the multi-factor LSM and the RSp
single-factor exercise strategy

Bermudan Duality Conservative

Exercise Gap Pct. Loss Pct. Loss
ts  te 0 Premium D(%SM D(I)D”SP LSM RSp | LSM RSp
1 10 4% 73 0.7 (0.1) 0.5 (0.1) 0.9 0.6 1.2 0.9
1 10 5% 201 1.0 (0.2) 0.8 (0.2) 0.5 0.4 0.7 0.6
1 10 6% 181 0.4 (0.1) 0.4 (0.1) 0.2 0.2 0.3 0.4
3 10 4% 65 0.4 (0.1) 0.2 (0.1) 0.5 0.3 0.8 0.5
3 10 5% 104 0.7 (0.2) 0.3 (0.1) 0.7 0.3 1.0 0.5
3 10 6% 103 0.5 (0.1) 0.4 (0.1) 0.5 0.4 0.7 0.6
6 10 4% 22 0.6 (0.1) 0.1 (0.0) 2.8 0.3 4.0 0.5
6 10 5% 31 0.2 (0.1) 0.1 (0.0) 0.8 0.4 1.2 0.6
6 10 6% 31 0.1 (0.1) 0.1(0.1) 0.4 0.4 0.7 0.7
1 15 4% 120 1.9 (0.3) 1.6 (0.3) 1.6 1.3 2.0 1.7
1 15 5% 329 2.0 (0.3) 1.7 (0.4) 0.6 0.5 0.8 0.7
1 15 6% 292 0.8 (0.2) 1.5 (0.4) 0.3 0.5 0.4 0.8

This table contains the duality gaps from the multi-factor Least square Monte Carlo
method (LSM) and the single-factor RS exercise strategy. The Duality Gap is a
measure of the expected losses from following a given strategy. The Bermudan
Exercise Premium denotes the difference between the Bermudan- and the European
swaption values in the multi-factor model using the LSM strategy. The Pct. Loss is
the duality gap in percent of the Bermudan exercise premium. Conservative Pct.
Loss denotes the duality gap plus 1.96 times the standard deviation of the duality
gap relative to the Bermudan exercise premia. Duality gaps have been estimated
using 200 AS paths in the outer simulation and 25 AS paths in the inner.
Furthermore, we applied the forward cap covering the exercise period as control
variate with sampling at the exercise time. Bermduan exercise premium and the
duality gap are in basis points.
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Figure 4: Duality Gaps for single-factor RSp and multi-factor LSM exercise
strategies
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This figure demonstrates that the duality gaps from the single-factor RSp exercise

strategy are at least as low as the multi-factor LSM, when we use the same number of
paths. On the first axis we have the set of Bermudan swaptions, while the second-axis
contains the duality gaps measured in basis points. 95% confindence intervals have
been included as error bars on the data series.

On top of that we have seen that the conditional present value losses based
on 5,000 paths where not significantly different from zero. Even if the expected
losses were positive, it seems reasonable that we also must worry about the
variance of these conditional losses. If the variance is much larger than the
expected loss, the holders of Bermudan swaptions could just as well get lucky.
Consider, for example, a dealer, that repeatedly writes an ATM 10ncl Bermudan
swaption to a "fool", who is just following a single-factor exercise strategy in
a multi-factor world. Our results show that with these odds, not even 5,000
deals are enough for the Law of Large Numbers to have locked in an almost
sure profit. Hence, we claim that expected losses from following single-factor
exercise strategies are also economically irrelevant.

Finally, we stress that these findings do not prove that single-factor models
are able to neither hedge nor value Bermudan swaptions properly. In our opin-
ion the ultimate test of the performance of single-factor model in the Bermudan
swaptions market is their hedging performance. As already mentioned, the lit-
erature on pricing and hedging of interest rate derivatives has been growing
rapidly. Hot topics of relevance in the Bermudan swaptions market, is the
concept of unspanned stochastic volatility (USV) recently introduced in Collin-
Dufresne & Goldstein (2002), who find that straddles in the cap and floor mar-
kets cannot be hedged using bonds alone. On the other hand, Fan, Gupta &
Ritchken (2002) find that the swaptions market is well integrated with Libor
swap rates and find no evidence of USV. Another research topic with relevance
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for the valuation of Bermudan swaption is the modelling of stochastic volatil-
ity and the importance of non-monotonic skews in the implied volatilities. A
stochastic factor driving volatilities is likely to have a much larger effect on
Bermudan swaption values than just another yield curve factor (see e.g. Jensen
& Svenstrup (2002) for some preliminary tests). Recent papers discussing the
implementation and calibration of Libor market models with stochastic volatil-
ity include Andersen & Brotherton-Ratcliffe (2001), Joshi & Rebonato (2001).

9 Conclusion

We find that following exercise strategies from calibrated single-factor models
in a multi-factor world does not necessarily lead to significant losses as claimed
in the literature. Neither are there any indications that the conditional present
value losses introduced in Longstaff et al. (2001) are important sources of risk for
Bermudan swaptions. Our findings show that the losses reported in Longstaff
et al. (2001) cannot be ascribed to the number of factors in the model deter-
mining the exercise strategy.

Interestingly we also find that the LSM approach outperforms the LAM
approach when valuing Bermudan swaptions with long exercise periods. In
fact, even the exercise strategy from the worst performing single-factor model
performs better.
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A Appendix
A.1 EUR Factor Loadings

Figure 5: Factor loadings in the benchmark model
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Illustration of the factor loadings for the 4-factor log-normal Libor market model
used as benchmark.

Table 7: Factor loadings in the benchmark model

Tenor 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50
1 0.091  0.162 0.205 0.220 0.212 0.193 0.169 0.145 0.126
2 -0.092 -0.079 -0.066 -0.049 -0.031 -0.013 0.004 0.018 0.031
3 0.082  0.013 -0.032 -0.051 -0.049 -0.036 -0.019 -0.001 0.013
4 0.002  0.024 0.034 0.028 0.010 -0.012 -0.033 -0.049 -0.058

Tenor 5.00 6.00 7.00 10.00 15.00  20.00  25.00  30.00

1 0.115 0.108 0.103 0.096 0.095 0.101  0.109  0.110
2 0.040  0.052  0.060  0.062  0.057 0.084 0.091 0.056
3 0.019  0.020 0.019 0.016 0.023 0.039 0.044 0.024
4 -0.056 -0.036 -0.014 0.009 -0.018 0.0560 0.083 0.017

Factor loadings defining the log-normal benchmark Libor market model.
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A.2 Term Correlations

The term correlation p* from time ¢ to 7" between two variables X and X; with
instantaneous variances of o; (s),i = k,j and instantaneous correlation py; (s)
is defined as (see e.g. Rebonato (n.d.b))

S ok(s)os (s >ka< >d
\/ft op (s dsft

A.3 Vasicek Term-Correlation

pk] (t T

Consider the Vasicek model where the short rate dynamics is given by the SDE
dr (t) =k (0 —r(t))dt + cdW (t),
which have a closed form solution, ¢t < u,
r(u)=0+e " (r(t)—0) 40 / C el gy (a).
t
The variance of
Var(r(t)) = Var (a /u e~ (u=a) gy (a)) =o? /u e 2= g (a)
t t
= ;—2 (1 — 672'“) .

The time zero term-covariance is easily seen to be t < u,

Cov (r(t),r (u)) Cov (7’ (t), e Rt (t)+o /tu e ru=a) gy (a)>
= e "DVar(r(t)).

And from this the term-correlation function is derived

corr (r r(u _ COU( () r(u)) e—r(u—t) Var( (1))
o) VVar (r (@) Var (r () +/Var (r () Var (r ()
—  orlu—t) Var (r(t)) R (1 — e~ 2nt)
Var (r (u)) (1 — e—2nu)
_ (1 _ 62/{1&)
B (1 _ eQnu) :
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A.4 Conditional Losses

Table 8: Comparison of single-factor BDTYy, and four-factor Libor market model

exercise strategies

Probability Single-factor Exercises
Swaption of Exercise % Same Early Late
ts te 6 | LSM BDTy | Early time Late | Loss Std | Loss  Std
1 10 4% [ 903 88.0 | 0.1 762 237 -12 (41)| 15 (10)
1 10 5% | 676 64.4 0.1 78.9 21.0 | 228 (67) 15 (10)
1 10 6% | 464 43.7 0.1 86.5 13.4 | 296 (155) 29 (10)
3 10 4% 85.1 83.5 0.1 88.2 11.7 -13 (39) 11 9)
3 10 5% | 65.2 62.9 0.0 85.5 14.4 85 (21) -3 9)
3 10 6% | 45.3 42.8 0.0 88.7 11.3 58 - 21 (10)
6 10 4% | 77.0 75.7 0.3 94.5 5.2 -61 (30) 9 (5)
6 10 5% | 59.2 57.3 0.0 92.4 7.6 0 - 14 (6)
6 10 6% | 40.7 38.5 0.0 93.1 6.9 0 - 16 (7)
1 15 4% | 89.7 87.5 0.4 70.6  29.0 72 (45) 33 (13)
1 15 5% 70.2 67.0 0.4 74.6  25.0 -3 (72) 2 (12)
1 15 6% | 524 495 | 0.1 820 17.9 | -190 (128) | 23 (12)

This table reports summary statistics for the single-factor exercise strategy and the
Least Square Monte Carlo exercise strategy in the multi-factor Libor market model.
Probability of exercise represents the total percentage of paths for which the
swaption is exercised. Also the percentage of paths where the single-factor models
signals exercise earlier, at the same time, or later than the multi-factor model are
included. The present value losses of exercising when the single-factor model implies
it is optimal at an earlier time than the four-factor model is the difference between
the immediate value of exercise and the present value of cash flows generated by
following the multi-factor strategy, averaged over all paths where the single-factor
implies exercise earlier than. Similarly, for the present value loss of exercising when
the single-factor model implies that exercise is optimal at a later time than the
four-factor model. All costs are expressed in basis points. Values are based on 5,000
simulated paths of the term structure.
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Table 9: Comparison of single-factor BDTp and four-factor Libor market model
exercise strategies

Probability Single-factor Exercises
Swaption of Exercise % Same Early Late
ts  te # | LSM BDTp | Early time Late | Loss Std | Loss Std
1 10 4% | 894 88.1 0.5 82.3 173 -3 (43) 38 (12)
1 10 5% | 68.6 66.9 0.8 83.5  15.6 0 (11) 31 (13)
1 10 6% | 47.2 46.1 0.5 93.0 6.5 -58  (11) 31 (16)
3 10 4% | 85.0 84.5 0.8 93.5 5.7 25 (8) 13 (15)
3 10 5% | 65.9 65.0 0.6 92.7 6.6 -53  (10) 21 (14)
3 10 6% | 46.0 45.2 0.4 93.7 5.9 -35  (11) =25 (15)
6 10 4% | 775 77.0 0.8 97.2 2.0 -27 (6) 2 (10)
6 10 5% | 574 56.7 0.6 96.4 3.0 3 (6) -5 (11)
6 10 6% | 405 40.0 0.9 97.1 2.1 -21 (8) 22 (12)
1 15 4% | 89.5 87.5 1.2 724 26.4 -66  (14) 20 (13)
1 15 5% | 68.1 66.6 0.9 80.3 18.8 | -111 (13) 16 (14)
1 15 6% | 525 510 | 06 873 121 4 (12) | 11 (15)

This table reports summary statistics for the single-factor exercise strategy and the
Least Square Monte Carlo exercise strategy in the multi-factor Libor market model.
Probability of exercise represents the total percentage of paths for which the
swaption is exercised. Also the percentage of paths where the single-factor models
signals exercise earlier, at the same time, or later than the multi-factor model are
included. The present value losses of exercising when the single-factor model implies
it is optimal at an earlier time than the four-factor model is the difference between
the immediate value of exercise and the present value of cash flows generated by
following the multi-factor strategy, averaged over all paths where the single-factor
implies exercise earlier than. Similarly, for the present value loss of exercising when
the single-factor model implies that exercise is optimal at a later time than the
four-factor model. All costs are expressed in basis points. Values are based on 5,000
simulated paths of the term structure.
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Table 10: Comparison of single-factor RSp and four-factor Libor market model
exercise strategies

Probability Single-factor Exercises
Swaption of Exercise % Same Early Late
ts  te 0 LSM RSp | Early time Late | Loss Std | Loss Std
1 10 4% | 90.3 90.6 9.8 87.1 3.1 -8 (14) 9 (22
1 10 5% | 67.2 66.5 6.9 87.1 6.0 -8 (16) 1 (17)
1 10 6% | 46.0 44.9 2.7 92.7 4.6 9 (20) 47 (20)
3 10 4% | 845 84.8 9.8 88.0 2.3 4 (11) 2 (16)
3 10 5% | 658 654 | 52 917 31 | -22 (16)| -5 (16)
3 10 6% | 473 461 | 3.0 923 47 20 (18) | 13 (16)
6 10 4% | 77.9 77.5 6.3 91.6 2.1 4 (8) 6 (6)
6 10 5% | 59.2 58.8 3.1 94.7 2.2 -10 (13) 9 (7)
6 10 6% | 42.2 41.8 1.8 96.4 1.7 -9 (17) 3 (9)
1 15 4% | 894 89.8 14.9 80.5 4.6 -13  (16) -20 (25)
1 15 5% | 709 700 | 91 87 82 | -13 (18)| 10 (20)
1 15 6% | 51.5 50.0 4.3 87.8 7.9 -2 (22) 23 (18)

This table reports summary statistics for the single-factor exercise strategy and the
Least Square Monte Carlo exercise strategy in the multi-factor Libor market model.
Probability of exercise represents the total percentage of paths for which the
swaption is exercised. Also the percentage of paths where the single-factor models
signals exercise earlier, at the same time, or later than the multi-factor model are
included. The present value losses of exercising when the single-factor model implies
it is optimal at an earlier time than the four-factor model is the difference between
the immediate value of exercise and the present value of cash flows generated by
following the multi-factor strategy, averaged over all paths where the single-factor
implies exercise earlier than. Similarly, for the present value loss of exercising when
the single-factor model implies that exercise is optimal at a later time than the
four-factor model. All costs are expressed in basis points. Values are based on 5,000
simulated paths of the term structure.
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Table 11: Comparison of single-factor RSp and four-factor Libor market model
exercise strategies

Probability Single-factor Exercises
Swaption of Exercise % Same Early Late
ts  te 0 LSM RSy Early time Late | Loss Std [ Loss Std
1 10 4% | 90.2 89.9 12.5 83.3 4.3 -7 (11) 14 (21)
1 10 5% | 674 672 | 124 811 65 | -29 (11)| -20 (15)
1 10 6% | 460 448 | 73 871 56 1 (1) | 44 (16)
3 10 4% | 844 851 | 157 823 21 1 @®) | -4 (18)
3 10 5% | 64.0 63.7 11.4 84.7 3.9 4 (10) 27 (13)
3 10 6% | 45.8 44.8 7.1 88.4 4.5 6 (11) 14 (15)
6 10 4% | 774 o 12.0 86.1 1.9 -1 (6) -4 (8)
6 10 5% | 57.8 57.5 8.5 89.5 2.0 -1 (6) 5 (8)
6 10 6% | 424 420 | 61 919 19 | -11  (8) | 10 (7)
1 15 4% | 894 89.3 15.7 78.6 5.7 4 (14) 48  (24)
1 15 5% | 70.1 68.9 11.7 78.0 10.3 13 (13) 29 (18)
1 15 6% | 52.8 50.9 7.3 83.7 9.0 4 (12) 46 (19)

This table reports summary statistics for the single-factor exercise strategy and the
Least Square Monte Carlo exercise strategy in the multi-factor Libor market model.
Probability of exercise represents the total percentage of paths for which the
swaption is exercised. Also the percentage of paths where the single-factor models
signals exercise earlier, at the same time, or later than the multi-factor model are
included. The present value losses of exercising when the single-factor model implies
it is optimal at an earlier time than the four-factor model is the difference between
the immediate value of exercise and the present value of cash flows generated by
following the multi-factor strategy, averaged over all paths where the single-factor
implies exercise earlier than. Similarly, for the present value loss of exercising when
the single-factor model implies that exercise is optimal at a later time than the
four-factor model. All costs are expressed in basis points. Values are based on 5,000
simulated paths of the term structure.
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Table 12: Comparison of single-factor ANp and four-factor Libor market model
exercise strategies

Probability Single-factor Exercises
Swaption of Exercise % Same Early Late
ts  te # | LSM ANp | Early time Late | Loss Std | Loss Std
1 10 4% [ 900 897 | 22 907 7.1 21 (23) | 21 (18)
1 10 5% | 685 68.1 3.0 91.7 5.3 9 (19) 40 (19)
1 10 6% | 48.1 47.9 1.6 95.3 3.1 -10  (20) -1 (20)
3 10 4% | 842 844 | 31 940 29 6 (15) | 23 (21)
3 10 5% | 652 649 | 26 940 35 | -22 (18) 2 (17)
3 10 6% | 46.7 46.3 2.0 95.0 2.9 -1 (17) -10 (22)
6 10 4% | 766 764 | 48 939 1.3 4 @®) | -2 (0
6 10 5% | 58.7 58.6 2.1 96.9 1.1 -5 (13) 1 (8)
6 10 6% | 423 419 | 1.3 975 12 | -10 (14)| 27 (20)
1 15 4% | 90.1 90.1 7.3 87.7 4.9 -6 (20) 11 (26)
1 15 5% | 70.6 70.5 6.0 88.7 5.2 -32 (20) 4 (21)
1 15 6% | 51.7 51.7 2.9 92.6 4.5 =57 (24) -13 (21)

This table reports summary statistics for the single-factor exercise strategy and the
Least Square Monte Carlo exercise strategy in the multi-factor Libor market model.
Probability of exercise represents the total percentage of paths for which the
swaption is exercised. Also the percentage of paths where the single-factor models
signals exercise earlier, at the same time, or later than the multi-factor model are
included. The present value losses of exercising when the single-factor model implies
it is optimal at an earlier time than the four-factor model is the difference between
the immediate value of exercise and the present value of cash flows generated by
following the multi-factor strategy, averaged over all paths where the single-factor
implies exercise earlier than. Similarly, for the present value loss of exercising when
the single-factor model implies that exercise is optimal at a later time than the
four-factor model. All costs are expressed in basis points. Values are based on 5,000
simulated paths of the term structure.
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Table 13: Comparison of single-factor ANy and four-factor Libor market model
exercise strategies

Probability Single-factor Exercises
Swaption of Exercise % Same Early Late
ts  te # | LSM ANy | Early time Late | Loss Std | Loss Std
1 10 4% | 89.9 89.5 4.3 88.3 74 -19  (14) 30 (18)
1 10 5% | 68.6 68.0 5.3 90.2 4.5 5 (11) 3 (21
1 10 6% | 46.1 45.6 3.9 93.8 24 17 (11) 24 (23)
3 10 4% | 84.7 84.5 6.6 91.9 1.6 -1 (8) -33 (22)
3 10 5% | 63.9 63.8 5.8 91.8 24 -2 (10) 13 (18)
3 10 6% | 467 461 | 40 931 29 | -15 (11) 7 (20)
6 10 4% | 78.0 78.1 9.5 89.0 1.6 -10 (6) 20 (10)
6 10 5% | 584 58.0 5.5 92.9 1.7 -11 (6) 5 (9)
6 10 6% | 415 413 | 42 946 12 4 ®) | 17 (1)
1 15 4% | 89.8 89.9 5.6 90.0 4.3 -19  (14) 4 (26)
1 15 5% | 70.5 70.0 6.9 88.4 4.7 -23  (13) 12 (24)
1 15 6% | 530 522 | 40  9L1 4.9 2 (12) | 10 (24)

This table reports summary statistics for the single-factor exercise strategy and the
Least Square Monte Carlo exercise strategy in the multi-factor Libor market model.
Probability of exercise represents the total percentage of paths for which the
swaption is exercised. Also the percentage of paths where the single-factor models
signals exercise earlier, at the same time, or later than the multi-factor model are
included. The present value losses of exercising when the single-factor model implies
it is optimal at an earlier time than the four-factor model is the difference between
the immediate value of exercise and the present value of cash flows generated by
following the multi-factor strategy, averaged over all paths where the single-factor
implies exercise earlier than. Similarly, for the present value loss of exercising when
the single-factor model implies that exercise is optimal at a later time than the
four-factor model. All costs are expressed in basis points. Values are based on 5,000
simulated paths of the term structure.

38





