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Abstract

In this paper we study and implement a finite difference version of the augmented
state variable approach proposed by Hull & White (1993) that allows for path-
dependent securities. We apply the method to a class of path-dependent interest
rate derivatives and consider several examples including mortgage backed securities
and collateralized mortgage obligations. The efficiency of the method is assessed in
a comparative study with Monte Carlo simulation and we find it to be faster for a
similar accuracy.
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1 Introduction
In Hull & White (1993) a method to price path-dependent securities in trees is demon-
strated to be an efficient way of handling particular path-dependent securities. The main
idea is to augment the state space with additional state variables to represent movements
in the past. In Wilmott, Dewynne & Howison (1993) the same technique is applied but
in a more general finite differences framework to value exotic options like look-back and
Asian options.
In this paper we first summarize the method for interest rate derivatives in a finite

difference setup. The method allows us to handle most common features in fixed income
products including particular types of path-dependencies as well as American features.
Secondly we apply the technique to other types of path-dependent securities, and we

illustrate that the valuation of collateralized mortgage obligations under rational pre-
payments can be done in a single backward run, as opposed to the two-step procedure
proposed in McConnell & Singh (1994) that employs both finite difference and Monte
Carlo techniques.
The numerical results presented in Hull & White (1993) indicate that the method is

faster and just as accurate as Monte Carlo simulation and that the method is not par-
ticularly sensitive to the density of the discretized augmented state space. However, our
numerical results show that there are in fact large differences in the density of the aug-
mented state space needed in order for the method to converge, but it is still at least as
fast as standard Monte Carlo for similar accuracy. The examples we consider are a mort-
gage backed security (MBS) with a path-dependent prepayment function, collateralized
mortgage obligations (CMO) such as the Interest Only (IO), the Principal Only (PO)
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and Sequential Pay tranches, and, finally, a capped amortizing Adjustable Rate Mortgage
(ARM) with a coupon that is settled as an average of historical interest rates.
In section 2 we go through the model framework. Section 3 describes the numerical

implementation while section 4 contains applications of the method. Finally, we make our
conclusion.

2 The Model Setup
The following exposition is based primarily on Wilmott et al. (1993), and the main dif-
ference is that we derive the fundamental partial differential equation in an interest rate
model, whereas Wilmott et al. (1993) work in a Black-Scholes world.

2.1 Interest Rate Dynamics

We work in a one-factor term structure setup, with models for the instantaneous short
rate rt that can be represented by the following SDE,

drt = µ(rt, t)dt+ σ(rt, t)dWt,

where µ and σ denote drift- and volatility functions that satisfy the usual conditions. Wt

is a one-dimensional Wiener-process. This setup covers many of the most commonly used
single factor models, but the technique is also applicable to multi-factor models.
Let V denote the value of an interest rate contingent claim, that is dependent on

the history of the short rate. Assume that this dependency can be summarized in a
z-dimensional state-vector A ∈ Rz, in the following way

At =

Z t

0

f(rs, s)ds.

To keep notation simple we assume that z = 1. However, it is possible to have z > 1.
With these specifications the value V (t, rt, At) of the claim is Markov with respect to the
information generated by the triple (t, rt, At) . In other words, we assume that the value
of the path-dependent security is given by the real valued function V (t, rt, At) defined on
R+ × D (rt) × D (At) . Here D (·) denotes the domain for a given variable. This domain
will in general depend on the specific term structure model and the definition of the
state-vector. Before continuing notice that

dAt = f(rt, t)dt,

which means that At is a state variable of finite variation, and does not add further noise
to the system. In particular this means that we do not need to worry about additional
risk premia.

2.2 The Partial Differential Equation

A standard arbitrage argument leads to the fundamental partial differential equation for
the security (the derivation can be found in appendix A.1 for completeness).

rtV (t, rt, At) =
∂V

∂t
+ 1

2σ(rt, t)
2 ∂

2V

∂r2t

+(µ(rt, t)− λ(rt, t)σ(rt, t))
∂V

∂rt
+ f(rt, t)

∂V

∂At
. (1)

Here λ (rt, t) denotes the market price of interest rate risk. A terminal condition must be
specified in order to determine a single solution to the problem, so let this be given by

V (T, rT , AT ) = h (T, rT , AT ) .
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With the appropriate boundary conditions, these equations will define the value function
and must in general be solved by numerical methods. Observe that the last term in
equation (1) is due to the state variable and will be zero for path-independent securities,
leaving the usual term-structure equation.

2.3 Discrete Sampling

When the state-variable is updated at discrete time points, the term ∂V
∂At

f(rt, t) in the
PDE found above will disappear, as dAt = f (rt, t) dt = 0 between sampling dates. The
simplification facilitates the solution compared to the continuous sampling as discrete
updates of the state-variable introduce a type of jump condition. Note that in the case of
continuous sampling greater care should be taken when implementing this method, but
we will not get into the details here, but refer the reader to Forsyth, Vetzal & Zvan (2000)
for a rigorous treatment of the numerical aspects.
Let Φ denote the time points where the state variable is updated. By definition

discretely sampled state variables remain constant between the sampling dates, and on a
sampling date they should be updated through a so-called update rule

Ati = U
¡
ti, rti , Ati−1

¢
.

A no arbitrage argument (Wilmott et al. (1993)) will show that a corresponding jump
condition will be

V
¡
t−i , rti , Ati−1

¢
= V

¡
t+i , rti , U

¡
ti, Ati−1 , rti

¢¢
, i ∈ Φ. (2)

In order to provide some intuition for the jump conditions due to discrete sampling of
the state variable, consider the following example. Assume we know the current value of
the state variable, and that time approaches the next sampling time. The uncertainty
regarding the new value of the state variable will diminish and immediately before the
fixing time we will know the new value. As the realization of the price process should
be continuous when no payments are made to either side of the contract, the values
immediately before and after the update should be equal.
It is worth noting that a clever choice of state variable and update rule is important

for optimal use of this method. As we shall see later it is sometimes possible to exploit
particular properties in a given security or the update rule to reduce the dimensionality
of the solution function.

2.4 Discrete Dividends

If the security pays discrete coupons an arbitrage argument leads to jump conditions. Let
Ψ denote the set of dates at which the security pays the couponsDi (ti, rti , Ati). Following
standard notation let t−i and t+i denote the time immediately before and after the i0th
payment is made, respectively. This means that the i0th jump condition due to coupons
is

V (t−i , rti , Ati) = V
¡
t+i , rti , Ati

¢
+Di (ti, rti , Ati) , i ∈ Ψ. (3)

2.5 Amortization of Principal

Another feature we must be able to incorporate is the amortization of the remaining
principal Pt. If ti is the time where Zti units of the principal are repaid, we have

V
³
t−i , rti , Pt−i , Ati

´
= V

³
t+i , rti , Pt−i

− Zti , Ati

´
+ Zti .

If the amortization scheme depends on the interest rate movements it will induce a
special kind of path-dependency, but in most cases these value functions have a similarity
solution without this path-dependency. As demonstrated below, securities where the
amortization Zti is linear in the remaining principal, support this similarity reduction.
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If the amortization schedule Zti is defined as a fraction θ (t, rt, Ati) of remaining prin-
cipal, i.e. Zti = θ (ti, rti , Ati) · Pt−i , then we have the following jump condition

V
³
t−i , rti , Pt−i , Ati

´
= V

³
t+i , rti , (1− θ (ti, rti , Ati)) · Pt−i , Ati

´
+ θ (ti, rti , Ati) · Pt−i .

For fixed income securities that are homogeneous of first degree in the remaining principal
Pt
1 , we can apply the similarity reduction

V
³
t−i , rti , Pt−i , Ati

´
= (1− θ(ti, rti , Ati)) · V

³
t+i , rti , Pt−i

, Ati

´
+ θ (rti , ti, Ati) · Pt−i

which implies

V
¡
t−i , rti , 1, Ati

¢
= (1− θ(ti, rti , Ati)) · V

¡
t+i , rti , 1, Ati

¢
+ θ (ti, rti , Ati) · 1 (4)

This facilitates the solution as we shall find a function of one variable less. We just need
to incorporate a version of this jump condition whenever principal is redeemed. Basically,
we always measure the value in terms of 100% remaining principal of the security.

3 The Numerical Solution

3.1 Transformation of the PDE

We apply a standard transformation of the interest rate state space (see e.g. Duffie (1996),
Stanton & Wallace (1999) or James & Webber (2000)). Define,

x(r) =
1

1 + πr
, π > 0,

with inverse
r(x) =

1− x

πx
, π > 0.

There are mainly two reasons that we want to transform the state space for the spot rate.
First, the transformation of the PDE (1) allows us to work with the solution on a bounded
space. Secondly, it enables us to increase the number of points in the most relevant part
of the state space using the constant π.
Let u (x, t) = V (r(x), t) .We now transform the PDE (1) into an PDE in u defined on

the bounded state space 0 to 1.

∂V (r, t)

∂r
=

∂u (x, t)

∂x

∂x

∂r
= ux

−π
(1 + πr)

2 = −πx2ux,

∂2V (r, t)

∂r2
= π2x4

∂2u (x, t)

∂x2
+ 2π2x3

∂u (x, t)

∂x
.

Substituting into (1) we obtain the following PDE for u in x, t where subscripts are short
hand notation for partial derivative

0 =
∂V

∂t
+ 1

2σ(rt, t)
2 ∂

2V

∂r2t
+ µ̃(rt, t)

∂V

∂rt
− Vtr

= ut +
1
2σ(r(x), t)

2
¡
π2x4uxx + 2π

2x3ux
¢
+ µ̃(r(x), t)

¡−πx2ux¢− ur(x)

= ut +
1
2σ(r(x), t)

2π2x4uxx + πx2
¡
σ(r(x), t)2πx− µ̃(r(x), t)

¢
ux − ur(x)

= ut (x, t) + β (x, t)uxx (x, t) + α (x, t)ux (x, t)− r(x)u (x, t) , (5)

with terminal condition

u (T, xT , AT ) = h (T, r(xT ), AT ) .

1Conditions for similarity reductions must also be satisfied on the boundary as well as by the terminal
function.
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3.1.1 Boundary conditions.

In general we need to specify boundary conditions if we are using implicit schemes to
solve parabolic PDE’s. However, as described in Vetzal (1998) for interest rate models
with mean reversion and constant standard deviation, the PDE above behaves more like
a hyperbolic PDE due to the size of the convection term, even though it is formally
parabolic. Hence, it will not only be unnecessary to use boundary conditions, it will
actually be most efficient to avoid specifying them.
Unfortunately not many interesting models have constant standard deviation, so we

might need to use something else. However, another boundary condition arises naturally,
as also noted by Vetzal (1998), by the fact that the −r (x)u term causes exponential decay,
thereby driving u and its derivatives to zero. This means that in these cases appropriate
boundary conditions could be e.g. u = 0 , ux = 0 or uxx = 0 on the upper boundary in r
space (lower boundary in x space).

3.2 The Finite Difference Schemes

The PDE in (1) will in general have to be solved numerically, and in this section we
describe the finite difference solution used.
Crank-Nicolson and implicit schemes are unconditionally stable, allowing us to match

any cash flow, sampling, or decision date. Furthermore, as the Crank-Nicolson scheme is
second-order accurate in time, we are able to take much larger steps in the time direction.
However, if the terminal condition is not differentiable in the state-variable, the conditions
for the Crank-Nicolson scheme are violated, which often causes oscillations in the solution.
This can often be avoided by using the pure implicit scheme for the first couple of steps,
or by smoothening the payoff function (see e.g. Tavella & Randall (2000)).
Therefore, we will use what is sometimes referred to as the ”delta” method, which

is basically a convex combination of pure explicit and implicit schemes, with the Crank-
Nicolson scheme as the special case with equal weight. This implementation facilitates
shifts between different finite difference schemes, by changing the weight ω.
On the boundary we use inside approximations that are second order in space, when

applying the implied boundary conditions. We refer to Appendix A.2 for further details.

3.3 Implementing an Augmented State-Variable

To fix some notation let V n
s,k, denote the value of the security at time tn, when the short

rate is rs, and where k denotes level of the state variable. We denote the discretization
of the augmented state variable by A = {A0, ..., AK}. At all sampling times, where the
augmented state variable is updated using the update scheme, the value must satisfy the
jump condition in (2)

V
¡
t−j , rtj , Aj−1

¢
= V

¡
t+j , rtj , U

¡
tj , rtj , Aj−1

¢¢
= V

¡
t+j , rtj , Aj

¢
.

However, the update function U does not necessarily take values in A, so we will not know
the exact value of V

¡
t+j , rtj , Aj

¢
. The basic idea in this method is to approximate it by

interpolating the future values at known levels of A.
With a view to this interpolation, define the mapping function k∗ (A) : R→ {0, ...,K}

by
Ak∗ ≤ A < Ak∗+1.

That is, the mapping picks the index of the highest level of the state variable that is still
less than or equal to the value A, assuming that the discretization of the state space has
been done such that this is a well-defined mapping. Notice that if V is non-linear in the
state variable, we get a biased estimate using linear interpolation. E.g. if V is a convex
function of A, then the estimate is too high.
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Figure 1: Illustration of the interpolation in the augmented state space.

We use either linear- or polynomial interpolation of order 22. Algorithms can be found
in Press, Flannery, Teukolsky & Vetterling (1989), and written in a pseudo notation we
get

V n−
s,k = int

³
Ak, {Ak∗−1, Ak∗ , Ak∗+1} ,

n
V n+
s,k∗−1, V

n+
s,k∗ , V

n+
s,k∗+1

o´
.

It is possible to make the number of levels of the augmented state space time and
state-dependent in order to minimize calculation time, as there is no need to consider
levels of the state variable that are not feasible. In situations where the state variable
is monotonincally increasing or decreasing, a simple example could be to use the current
value as either upper or lower bound of the augmented state space.

4 Applications
The technique can be applied to a wide range of path-dependent securities. The essential
part is to make a clever choice of state variables and update rules. As a complicated
example Dewynne & Wilmott (n.d.) show how to value a trend based option like a
”Five-times-up-and-out” using this approach.
In the following numerical analysis we use the Cox-Ingersoll-Ross model,

µ(rt, t) = κ (µ− rt) , σ(rt, t) = σ
√
rt, λ (rt, t) = λCIR

√
rt/σ

with parameters as given in table 1.

κ µ σ λCIR

0.3 0.08 0.12 0

Table 1: Parameters in the CIR model

4.1 Mortgage Backed Securities

A standard mortgage backed security(MBS) is a fixed rate mortgage with an embedded
option that allows the borrower to repay the remaining principal at par at any time
during the life of the mortgage. This means that when refinancing rates fall, borrowers
prepay their loans by taking up new loans at the prevailing market rate. Any reasonable
pricing model for MBS’s is designed to incorporate what is known as the burnout effect,
namely that borrowers most inclined to prepay leave the mortgage pool, causing future
prepayment rates to decline ceteris paribus.

2Other interpolation schemes such as cubic splines and rational interpolation have been tested without
improvements.
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This heterogeneity among borrowers can be modelled in basically two ways, which
we will denote explicit and implicit burnout. Implicit modelling of burn out consists of
summarizing the historical interest and prepayment behavior in state variables which enter
directly into the prepayment function. This is also termed a path-dependent prepayment
function. Early contributions in this direction were made by Schwartz & Torous (1989)
and Richard & Roll (1989). Examples of explicit modelling of burnout can be found in
Jakobsen (1992) and Stanton (1995). By regarding a bond in a large and heterogeneous
mortgage pool as a portfolio of homogeneous sub pools, each having a path-independent
prepayment function, they demonstrate that changes in the mixture of borrowers will
induce a burnout pattern very similar to that of the implicit models.
When it comes to valuing MBS, Monte Carlo simulation has by some been considered

superior to backward induction techniques as Monte Carlo simulation allows the prepay-
ment model to combine the two approaches, but as shown here so do recombining lattice
methods. On the other hand, Monte Carlo simulation has the serious flaw, namely that
it is unable, or at least unsuitable to handle MBS’s under rational prepayment behavior.
Especially the fact that American or Bermudan option pricing is very hard to do by Monte
Carlo simulation, means that we cannot use this approach to compute the optimal prepay-
ment strategy. Furthermore, as mentioned earlier, the finite difference approach facilitates
the task of valuing options on MBS’s or CMO’s as we just use backward induction.
As mentioned above we need to define the state variable and the update rule in order

to make use of the method. One variable that has been applied in many prepayment
models in various forms is a so called pool factor Bj , that measures the current remaining
principal relative to the originally scheduled. If θj denotes the conditional prepayment
rate, i.e. the fraction of the remaining borrowers that prepay at time tj , we have that

Bj = Π
j
i=1 (1− θi) , B0 = 1.

The update rule U is given by

Bj = U (t, rt, Bj−1) = Bj−1 · (1− θj) ,

Assume that the conditional prepayment rate (CPR) θj = f
¡
tj , rtj , Bj−1

¢
is a function

f of some explaining variables, one of them being the pool factor, making the prepayment
model path-dependent. This means that at a term of notice3, where the borrowers have
to decide whether to prepay or not, we apply the jump condition

V (t−, rt, Bj−1) = θj · 1 + (1− θj) · V
¡
t+, rt, U (t, rt, Bj−1)

¢
, (6)

measured in terms of principal at time t−.

4.1.1 MBS: An example

As an example we consider the pricing of a 20-year annuity bond, with a fixed 8% coupon
and quarterly payments, where the borrowers’ behavior is described by the very simplified
but path-dependent prepayment function for the conditional prepayment rate,

θj
¡
rtj , Bj−1

¢
= min

³
(1 + 30 ·Bj−1) ·

¡
Coupon− ¡rtj + 1%¢¢+ , 100%

´
.

3Almost all mortgages have a term of notice, but in these examples we ignore these features, such that
prepayment decisions are taken at the term date.
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Figure 2: Illustration of the path-dependent prepayment function. CPR denotes the
conditional prepayment rate and B the path-dependen burnout factor.

Table 2 illustrates the convergence of the value of the MBS for different values of the
short rate as we increase the density of the discrete augmented state space using first
linear and then quadratic interpolation. Monte Carlo estimates based on 40.000 paths
using antithetic variates as variance reduction (a total of 80.000 paths) are given below.
The right column shows the differences between the finite difference solution and the MC
estimates measured in basis points. For three out of four levels of the short rate we cannot
at a 95% significance level reject the hypotehesis that the MC and PDE values are equal,
when the number of states is high enough. However for all practical applications the
differences are not significant as they are way inside bid-ask spreads, which are at least 10
bps. These results also confirm the conclusions in Hull & White (1993), namely that the
quadratic interpolation seems to improve the method whenK is low. The table also shows
computation times and it is obvious that the method is quite efficient compared to this
particular MC implementation. The interesting thing here is not whether the numbers are
exactly equal, as we know that in the limit both methods will give us the correct values.
The basic point is that the PDE is fully able to handle this path dependency; there is no
need to simulate in this case.

4.2 Collateralized Mortgage Obligations

CMO’s are constructed by allocating the payments from the underlying collateral (usually
MBS) into different new securities (called tranches). Depending on the redistribution of
the payments, these tranches can have characteristics that are indeed very different from
those of the collateral. In practice all kinds of CMO’s are created to fit investor preferences.
McConnell & Singh (1994) propose a two-step procedure to value CMO’s under ra-

tional prepayments. The rational exercise of the prepayment option precludes MC as a
feasible solution procedure regarding the prepayment decisions, so they find the optimal
exercise boundary by finite difference. In the second step they use MC to work forward in
time distributing the cash flows using the optimal exercise boundary found in step one as
a prepayment function. In relation to the augmented state space approach, McConnell &
Singh (1994) claim that it is necessary to include a state variable for each tranche making
the approach technically unfeasible. However, if the allocation of the cash flow is based
on the remaining debt alone, we do not need more than one state variable per sub pool
of borrowers. We do not need a state variable for each tranche.
We now show that some of the most widely used CMO structures can be priced using
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Table 2: Convergence of the PDE solution for the Mortgage Backed Security

Linear PDE PDE-MC
No. Comp. Short Rate (bps)
Aug Time 2% 4.8% 8% 12% 2% 4.8% 8% 12%
3 1 101.484 101.023 96.570 88.949 2 44 46 35
5 1 101.476 100.810 96.317 88.767 1 23 21 16
7 2 101.471 100.728 96.231 88.707 0 15 12 10
9 3 101.469 100.690 96.191 88.679 0 11 8 8
11 3 101.468 100.666 96.169 88.664 0 9 6 6
13 3 101.467 100.651 96.155 88.654 0 7 5 5
15 4 101.466 100.642 96.146 88.648 0 6 4 4
17 4 101.466 100.636 96.140 88.643 0 5 3 4
19 5 101.465 100.630 96.135 88.640 0 5 3 4
21 5 101.465 100.627 96.131 88.638 0 5 2 3
31 8 101.464 100.616 96.122 88.631 0 4 1 3
41 9 101.464 100.612 96.119 88.629 0 3 1 3
61 14 101.464 100.609 96.116 88.627 0 3 1 2
81 18 101.464 100.608 96.115 88.626 0 3 1 2

MC 598 101.47 100.58 96.11 88.60
Std.Dev 0.00 0.01 0.02 0.02 0.2 1.2 2.1 2.0

Quadratic PDE PDE-MC
No. Comp. Short Rate (bps)
Aug. Time 2% 4.8% 8% 12% 2% 4.8% 8% 12%
3 1 101.475 100.695 96.169 88.664 1 11 6 6
5 2 101.460 100.512 96.023 88.563 -1 -7 -9 -4
7 2 101.458 100.544 96.064 88.592 -1 -4 -5 -1
9 3 101.460 100.572 96.088 88.609 -1 -1 -2 1
11 4 101.462 100.587 96.101 88.618 -1 1 -1 1
13 5 101.462 100.596 96.108 88.623 0 2 0 2
15 6 101.463 100.603 96.113 88.626 0 2 0 2
17 6 101.463 100.606 96.115 88.627 0 2 1 2
19 7 101.463 100.608 96.117 88.628 0 3 1 3
21 7 101.463 100.609 96.118 88.629 0 3 1 3
31 11 101.463 100.610 96.118 88.629 0 3 1 3
41 14 101.464 100.610 96.117 88.628 0 3 1 2
61 21 101.464 100.608 96.116 88.627 0 3 1 2
81 27 101.464 100.608 96.115 88.626 0 3 1 2

MC 598 101.47 100.58 96.11 88.60
Std.dev 0.00 0.01 0.02 0.02 0.2 1.2 2.1 2.0

This table illustrate the convergence of the PDE approach using a Linear and Qudratic
interpolation scheme. No. Aug denotes the number of spatial grid points in the augmented
state-space and Comp. Time the calculation time in seconds. MC denotes the Monte-Carlo
estimates for various levels of initial short rate and Std.Dev. is the standard deviation.
PDE-MC is the difference between PDE and the MC estimates measured in basis points. In the
PDE implementation a Crank-Nicolson scheme was used with 80 spatial grid points and 24
steps per year.
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the augmented state variable approach. There are only a few limitations. For example,
we will not be able to calculate measures such as weighted average life (WAL), as the
state price distribution in the augmented state space is unknown.

4.2.1 Mortgage Strips

One of the most natural ways to split the total cash flow received from the collateral, is
into principal and interest payments. These mortgage strips are also known as Interest
Only (IO) and Principal Only (IO). The holder of an IO receives all interest payments
from the collateral, while the PO holders receive the scheduled as well as unscheduled
repayment on the principal. It is clear that the value of the IO and the PO together
should equal that of the collateral, i.e.

V C = V IO + V PO.

If we use this fact to rewrite equation (6), it follows that

V C(t−, rt, Bj−1) = θj · 1 + (1− θj) · V C
¡
t+, rt, U (t, rt, Bj−1)

¢
which implies

V IO(t−, rt, Bj−1) + V PO(t−, rt, Bj−1) = θj · 1 + (1− θj) · V IO
¡
t+, rt, U (t, rt, Bj−1)

¢
+(1− θj) · V PO

¡
t+, rt, U (t, rt, Bj−1)

¢
The PO receives all repayments, and the IO looses the future interest corresponding to
the prepaid principal. Hence, the jump equations due to prepayment will look like

V IO(t−, rt, Bj−1) = (1− θj) · V IO
¡
t+, rt, U (t, rt, Bj−1)

¢
,

V PO(t−, rt, Bj−1) = θj · 1 + (1− θj) · V PO
¡
t+, rt, U (t, rt, Bj−1)

¢
.

From these it is clear that both these tranches are mildly path-dependent if the pre-
payment function is path-independent. Hence, the mortgage strips can be evaluated in
exactly the same way as the collateral.

4.2.2 Sequential Pay Tranches

As mentioned in section (4.1) there are several reasonable measures for the historical
interest rate and prepayment behavior, but the pool factor definition chosen above has
the additional advantage that it can also be used to value CMO structures, where we
can not apply the similarity reduction. The sequential pay tranches are examples of such
structures, as the value of the tranches are not linear in remaining debt.

An example Consider two tranches T1 and T2 on a collateral of 100 units of the MBS
from before. Tranche 1 receives the first W1 percent of the collateral, and when all

CMO Nominal Coupon
Collateral 100 C
Tranche A W1·100 C1
Tranche B W2·100 C2

Table 3: Example of Sequential Pay CMO

principal in tranche T1 has been redeemed, tranche T2 starts receiving principal. Both
tranches receive interest on the remaining principal. Notice that if C1 > C2 there will
be an interest deficit after the first installment on the principal, and an interest excess if
C1 < C2. In these cases issuers often add a residual class - a so called Z-bond, but we will

10



not go into these details. The number of CMO constructions is almost infinite and only
the inventiveness seems to set the limit.
To keep things simple let us assume that tranche T1 receives the first 60% of the

principal and that tranche T2 gets the rest, but that they both pay the same interest as
the collateral, i.e. W1 = 60%, W2 = 40%, and C = C1 = C2 = 8%.

1 6

11 16 21 26 31 36 41 46 51 56 61 66 71 76

A (60%)
B (40%)

Collateral0

1

2

3

4

5

6

7

8

20 Year Annuity Bond, Coupon 8%  Constant CPR = 5%

A (60%)
B (40%)
Collateral

Figure 3: Illustration of cash flows for the tranches, given the cashflow from the collateral.

Notice that this construction has no similarity reduction as the amortization is not
linear in the principal. Here the use of the augmented state variable is crucial, even if
the prepayment function is path-independent. By using the pool factor defined above
as state variable, we will be able to decide how much the individual tranches should
receive at a given time for a given spot rate. To find the nominal value of the remaining
debt we multiply the pool factor with the scheduled remaining principal in case of no
prepayments. Denote the scheduled remaining principal in case of no prepayments by P̂j
and the actual remaining principal after the j0th payment Pj , both measured in percent
of initial principal. Then by definition of the pool factor,

Pj = Bj · P̂j .

Given the nominal value we can allocate the cash flow to the tranches in accordance with
the definition as we do when we go forward during the MC simulation. At time j we let
Zj denote the total repayment, TZj the total repayment since time 0, Iij and Zi

j denote
the interest and repayment for the i’th tranche, and Ī is the number of trances.

Zj = Pj−1 − Pj ,

TZj = 1− Pj ,

P i
j =

ÃÃ
iX

m=1

Wm − TZj

!
∧Wi

!+
, i = 1, .., Ī

Zi
j =

Ã
Zj −

i−1X
m=1

Zm
j

!
∧ P i

j−1, i, ..., Ī

Iij = P i
j−1 · Ci, i = 1, ..., Ī.
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Given these expressions we can now state the following jump condition for the value of
tranche i at time j

V i
¡
t−, rt, Bj−1

¢
= V i

¡
t−, rt, Bj

¢
+ Zi

j + Iij , i = 1, ..., Ī.

Numerical Results for Sequential Tranches As for the numerical results for the
sequential tranches reported in Tables 4 and 5, there are at least three things worth
mentioning. First, the differences between the MC results and the PDE approach are
small when the number of state levels K is high enough. Secondly, however, as opposed
to the conclusions in Hull & White (1993) and the results for the collateral, the tranches
are quite sensitive with regard to the number of state levels. We need much more than 6
levels in order to obtain reasonable results. Thirdly, we also see that for small values of
K the quadratic interpolation scheme performs worse than the linear scheme. The two
latter points are not that surprising though, as the value function is not smooth in the
state variable.

4.3 Average Rate Capped Amortizing ARM

We examine a security traded in the Danish mortgage market named BoligX. The con-
struction of the security is quite non-standard for several reasons. The BoligX loan is a
5-year adjustable rate mortgage ARM that can be issued with or without an embedded
5-year cap. Usually a cap on an ARM is paid for separately, but the BoligX loan is a
genuine pass-through in the sense that payments from the borrowers are paid directly to
the mortgage holders, and the cap with strike κ is paid for through a premium rate ρ.
There are quarterly payments which are settled in pairs twice a year. The size of the

payments are based on the borrower having an adjustable rate annuity mortgage with
m payments, typically 80 or 120 corresponding to 20- or 30-year. The coupon on the
underlying mortgage is reset twice a year as a day arithmetic average of the 6-month
Cibor rate over a prespecified 10 days fixing period.
This means that at the n0th fixing time, the next two payments are equal to the pay-

ment received from an annuity with m−2n periods and a coupon rate that is Cn. On top
of the average will be a coupon premium to pay for the cap. Due to this construction of the
security there will be repayment on the principal, and this repayment increases/decreases
as interest rates decrease/increase.
Let N denote the number of fixing periods and

©
s1n, .., s

10
n

ª
the set of dates in the n0th

fixing period. Furthermore, let t1n and t2n denote payment times for the payments settled
at time s10n . Hence, the n’th coupon rate will be given as

Cn = min (An + ρ, κ) ,

where An =
1
10

P10
i=1 r

¡
sin
¢
. The size of the payments settled in period n can then be

found from the standard annuity formula

Yn = Pn
Cn

1− (1 + Cn)
−(m−2(n−1)) , n = 1, ....,

m

2

where m−2 (n− 1) is the number of remaining payments and Pn the remaining principal
outstanding at fixing time n.
In order to model the settlement of the coupon rate as an average of previous interest

rates, we let the state variable A be the discretely sampled average of the short rate . The
update rule in the case of a discretely sampled average as a state variable, can be written
as

A
¡
sin
¢
= U

¡
sin, r

¡
sin
¢
, A
¡
si−1n

¢¢
=
1

i
r
¡
sin
¢
+

i− 1
i

A
¡
si−1n

¢
.

Another non-standard feature of the BoligX loan is that the sampling takes place
before the actual accruement period. But as the payments are known at the fixing time

12



Table 4: Convergence of the PDE solution for Tranche A

Linear PDE PDE-MC
No. Comp. Short Rate (bps)
Aug. Time 2% 4.8% 8% 12% 2% 4.8% 8% 12%
3 3 61.326 69.465 66.295 58.456 47 924 848 494
5 3 60.931 63.081 60.962 55.451 7 285 315 193
7 4 60.885 61.382 59.248 54.469 2 115 143 95
9 5 60.872 60.744 58.501 54.032 1 51 68 51
11 6 60.862 60.346 58.062 53.776 0 12 25 26
13 6 60.866 60.424 57.981 53.662 1 19 16 14
15 8 60.868 60.479 58.019 53.649 1 25 20 13
17 8 60.867 60.453 58.016 53.649 1 22 20 13
19 10 60.865 60.376 57.965 53.631 0 15 15 11
21 10 60.862 60.285 57.897 53.603 0 5 8 8
31 15 60.861 60.267 57.853 53.565 0 4 4 5
41 19 60.861 60.257 57.835 53.553 0 3 2 3
61 29 60.861 60.251 57.821 53.543 0 2 0 2
81 38 60.861 60.248 57.815 53.540 0 2 0 2

MC 574 60.86 60.23 57.82 53.52
Std.Dev 0.00 0.01 0.01 0.01 0.0 0.5 1.2 1.2

Quadratic PDE PDE-MC
No. Comp. Short Rate (bps)
Aug. Time 2% 4.8% 8% 12% 2% 4.8% 8% 12%
3 2 59.862 31.239 21.175 23.957 -100 -2899 -3664 -2956
5 4 59.415 43.296 48.234 49.676 -145 -1693 -958 -384
7 5 60.885 61.382 59.248 54.469 2 115 143 95
9 7 60.872 60.744 58.501 54.032 1 51 68 51
11 8 60.862 60.346 58.062 53.776 0 12 25 26
13 10 60.866 60.424 57.981 53.662 1 19 16 14
15 11 60.868 60.479 58.019 53.649 1 25 20 13
17 12 60.867 60.453 58.016 53.649 1 22 20 13
19 13 60.865 60.376 57.965 53.631 0 15 15 11
21 15 60.862 60.285 57.897 53.603 0 5 8 8
31 21 60.861 60.267 57.853 53.565 0 4 4 5
41 28 60.861 60.257 57.835 53.553 0 3 2 3
61 42 60.861 60.251 57.821 53.543 0 2 0 2
81 54 60.861 60.248 57.815 53.540 0 2 0 2

MC 574 60.86 60.23 57.82 53.52
Std.dev 0.00 0.01 0.01 0.01 0.0 0.5 1.2 1.2

This table illustrate the convergence of the PDE approach using a Linear and Qudratic
interpolation scheme. No. Aug denotes the number of spatial grid points in the augmented
state-space and Comp. Time the calculation time in seconds. MC denotes the Monte-Carlo
estimates for various levels of initial short rate and Std.Dev. is the standard deviation.
PDE-MC is the difference between PDE and the MC estimates measured in basis points. In the
PDE implementation a Crank-Nicolson scheme was used with 80 spatial grid points and 24
steps per year.
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Table 5: Convergence of the PDE solution for Tranche B

Linear PDE PDE-MC
No. Comp. Short Rate (bps)
Aug. Time 2% 4.8% 8% 12% 2% 4.8% 8% 12%
3 3 40.115 30.847 29.542 29.967 -49 -950 -875 -512
5 3 40.517 37.326 34.971 33.045 -9 -302 -332 -204
7 4 40.566 39.083 36.740 34.067 -4 -127 -155 -102
9 5 40.582 39.755 37.519 34.528 -2 -60 -77 -56
11 6 40.594 40.177 37.980 34.799 -1 -17 -31 -29
13 6 40.591 40.115 38.075 34.924 -2 -24 -22 -16
15 8 40.590 40.071 38.047 34.943 -2 -28 -25 -14
17 8 40.592 40.105 38.057 34.949 -1 -25 -24 -13
19 10 40.595 40.190 38.115 34.971 -1 -16 -18 -11
21 10 40.598 40.286 38.187 35.002 -1 -6 -11 -8
31 15 40.600 40.319 38.244 35.050 -1 -3 -5 -3
41 19 40.601 40.337 38.267 35.065 -1 -1 -3 -2
61 29 40.601 40.348 38.287 35.079 0 0 -1 -1
81 38 40.602 40.354 38.295 35.083 0 0 0 0

MC 574 40.61 40.35 38.29 35.08
Std.Dev 0.00 0.01 0.01 0.01 0.1 0.8 1.0 0.9

Quadratic PDE PDE-MC
No. Comp. Short Rate (bps)
Aug. Time 2% 4.8% 8% 12% 2% 4.8% 8% 12%
3 2 41.588 69.304 74.925 64.667 98 2895 3663 2958
5 4 42.185 59.347 49.621 40.072 158 1900 1133 499
7 5 40.613 39.634 37.205 34.385 1 -72 -109 -70
9 7 40.613 40.111 37.815 34.728 1 -24 -48 -36
11 8 40.616 40.422 38.181 34.934 1 7 -11 -15
13 10 40.607 40.292 38.218 35.019 0 -6 -7 -6
15 11 40.603 40.205 38.153 35.013 0 -15 -14 -7
17 12 40.602 40.208 38.138 35.002 0 -14 -16 -8
19 13 40.603 40.271 38.177 35.012 0 -8 -12 -7
21 15 40.605 40.351 38.237 35.034 0 0 -6 -5
31 21 40.604 40.348 38.263 35.061 0 0 -3 -2
41 28 40.603 40.350 38.276 35.070 0 0 -2 -1
61 42 40.602 40.352 38.289 35.080 0 0 0 0
81 54 40.602 40.355 38.296 35.084 0 0 0 0

MC 574 40.61 40.35 38.29 35.08
Std.Dev 0.00 0.01 0.01 0.01 0.1 0.8 1.0 0.9

This table illustrate the convergence of the PDE approach using a Linear and Qudratic
interpolation scheme. No. Aug denotes the number of spatial grid points in the augmented
state-space and Comp. Time the calculation time in seconds. MC denotes the Monte-Carlo
estimates for various levels of initial short rate and Std.Dev. is the standard deviation.
PDE-MC is the difference between PDE and the MC estimates measured in basis points. In the
PDE implementation a Crank-Nicolson scheme was used with 80 spatial grid points and 24
steps per year.
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s10n , the time s10n present value of the payments settled is just Yn
¡
B
¡
s10n , t1n

¢
+B

¡
s10n, t

2
n

¢¢
,

where B (t, T ) denotes the time t value of a discount bond maturing at time T .
A part of these two payments is amortized principal, and hence we will need to incor-

porate this into a jump condition. It can easily be shown that the amortization rate θ due
to the first two payments of an annuity bond with an initial nominal of Pn, m− 2 (n− 1)
payments and coupon Cn is

θn =
Yn · (1 + Cn)

−(m−2(n−1)) · (2 + Cn)

Pn
.

We are now ready to state the jump conditions for the sampling dates in period n

V (sj−n , r(sjn), A(s
j−1
n )) = V (sj+n , r(sjn), A(s

j
n)), j = 1, ..., 9

At the last sampling date in period n we also add the present value of the two payments
and apply the jump condition due to the armortized principal.

V (s10−n , r
¡
s10n
¢
, A
¡
s9n
¢
) = Yn ·

¡
B(s10n , t1n) +B(s10n , t2n)

¢
+(1− θn) · V

¡
s10+n , r

¡
s10n
¢
, A
¡
s10n
¢¢
,

At the very last payment date the investor also receives the remaining principal, while
the intermediary issues a new BoligX loan on behalf of the borrower.

Numerical Results BoligX The premium ρ in the example is 20 bps and the cap rate
κ is 7.7%. In table 6 we see that only the out the money value is more than two standard
deviations away from the MC value. As there are no differences in the performance of the
linear or quadratic interpolation scheme when K ≥ 5, there is no reason to use anything
other than linear interpolation.

5 Conclusions
In this paper we have analyzed a numerical method that efficiently allows valuation of
a class of path-dependent interest rate derivatives in a finite difference setup. We have
focused on mortgage backed security valuation in particular and we show that this method
is able to handle both the American feature but also path-dependencies present in MBS’s.
Furthermore, the method is at least as efficient as standard Monte Carlo techniques for
similar precision, even when we consider 20- or 30-year products.
There are of course limitations to the application of this method due to the curse of

dimensionality. If the dimension of the augmented state vector is high, we will not only
have to make use of a high dimensional interpolation scheme, but the number of points in
the discretized augmented state space will increase exponentially with the dimension. For
example, suppose we have a mortgage pool that consists of say 4 sub pools or more with
different prepayment behavior. The valuation of a sequential pay CMO, would require us
to use a 4-dimensional state vector to summarize all possible combinations of remaining
debt or equivalently burnout in the sub pools.
At last we mention that this method can also be used to model and access the value of

the delivery options embedded in for example Danish mortgage backed bonds. A delivery
option gives the borrower the right to buy back her own loan from the mortgage pool at
market value. The presence of this option means that we almost never see prepayments
below par. In order to model this option we will need to know the market value of the
mortgage at each future time and state. That is, we need not only know the values of the
loans in individual sub pools but also their relative share of the total mortgage pool.
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Crank-Nicolson Scheme, S=80, SPY=96

Linear PDE PDE-MC
No. Comp. Short Rate (bps)
Aug. Time 2% 4.8% 8% 12% 2% 4.8% 8% 12%
3 3 98.637 97.438 94.827 89.093 -23 -37 -37 -17
5 3 98.675 97.501 94.871 89.116 -19 -31 -33 -14
7 4 98.722 97.570 94.917 89.139 -15 -24 -28 -12
9 4 98.758 97.627 94.958 89.161 -11 -18 -24 -10
11 4 98.783 97.627 94.993 89.179 -9 -14 -21 -8
13 6 98.801 97.698 95.022 89.193 -7 -11 -18 -7
15 6 98.815 97.719 95.046 89.205 -5 -9 -15 -5
21 8 98.841 97.761 95.098 89.232 -3 -5 -10 -3
31 11 98.861 97.794 95.147 89.256 -1 -2 -5 0
41 14 98.873 97.813 95.179 89.272 0 0 -2 1
61 20 98.882 97.827 95.204 89.284 1 2 1 3
81 25 98.882 97.828 95.205 89.285 1 2 1 3
101 32 98.882 97.828 95.205 89.285 1 2 1 3

MC 475 98.87 97.81 95.20 89.26
std.dev 0.008 0.011 0.013 0.011 0.8 1.1 1.3 1.1

Quadratic PDE PDE-MC
No. Comp. Short Rate (bps)
Aug. Time 2% 4.8% 8% 12% 2% 4.8% 8% 12%
3 3 99.356 98.948 98.111 96.586 49 114 291 733
5 4 98.675 97.501 94.871 89.116 -19 -31 -33 -14
7 4 98.722 97.570 94.917 89.139 -15 -24 -28 -12
9 5 98.758 97.627 94.958 89.161 -11 -18 -24 -10
11 6 98.783 97.668 94.993 89.179 -9 -14 -21 -8
13 7 98.801 97.698 95.022 89.193 -7 -11 -18 -7
15 8 98.815 97.719 95.046 89.205 -5 -9 -15 -5
21 10 98.841 97.761 95.098 89.232 -3 -5 -10 -3
31 14 98.861 97.794 95.147 89.256 -1 -2 -5 0
41 19 98.873 97.813 95.179 89.272 0 0 -2 1
61 27 98.882 97.827 95.204 89.284 1 2 1 3
81 36 98.882 97.828 95.205 89.285 1 2 1 3
101 44 98.882 97.828 95.205 89.285 1 2 1 3

MC 475 98.87 97.81 95.20 89.26
std.dev 0.008 0.011 0.013 0.011 0.8 1.1 1.3 1.1

Table 6: BoligX: Convergence of the PDE approach as we increase density in the aug-
mented state space. Monte Carlo estimates and standard deviations are below.
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A Appendix

A.1 The Derivation of the Fundamental PDE

If we assume that the value function V (t, rt, At) satisfies the usual regularities we can
apply Itô’s lemma to find the dynamics for the value of the claim

dV (t, rt, At) =
∂V

∂rt
drt +

∂V

∂t
dt+

∂V

∂At
dAt +

1
2

∂2V

∂r2t
d hrti

=

µ
µ(rt, t)

∂V

∂rt
+

∂V

∂t
+ 1

2σ(rt, t)
2 ∂

2V

∂r2t
+ f(rt, t)

∂V

∂At

¶
dt

+σ(rt, t)
∂V

∂rt
dWt.

Let now Xt = F (rt, t) denote the price of another security depending on the short rate
e.g. a zero coupon bond of maturity T , governed by the following SDE

dXt =
∂F

∂rt
drt +

∂F

∂t
dt+ 1

2

∂2F

∂r2t
d hrti

=
∂F

∂rt
drt +

∂F

∂t
dt+ 1

2σ(rt, t)
2 ∂

2F

∂r2t
dt

If we sell αt units of Xt and for each unit of V, we see that the value of the portfolio
changes as

d (Vt − αtXt) = dVt − αtdXt

=

µ
∂V

∂rt
drt +

∂V

∂t
dt+

∂V

∂At
dAt +

1
2σ(rt, t)

2 ∂
2V

∂r2t
dt

¶
−αt

µ
∂F

∂rt
drt +

∂F

∂t
dt+ 1

2σ(rt, t)
2 ∂

2F

∂r2t
dt

¶
By choosing αt such thatµ

∂V

∂rt
− αt

∂F

∂rt

¶
drt = 0⇔ αt =

∂V/∂rt
∂F/∂rt

,

the change in value of the portfolio is deterministic. Hence the drift should be equal to
the short rate,

d (Vt − αtXt) = d

µ
Vt − ∂V/∂rt

∂F/∂rt
Xt

¶
=

µ
Vt − ∂V/∂rt

∂F/∂rt
Xt

¶
rtdt

⇔ µ
∂V

∂t
dt+

∂V

∂At
dAt +

1
2σ(rt, t)

2 ∂
2V

∂r2t
dt

¶
−∂V/∂rt
∂F/∂rt

µ
∂F

∂t
+ 1

2σ(rt, t)
2 ∂

2F

∂r2t

¶
dt =

µ
Vt − ∂V/∂rt

∂F/∂rt
Xt

¶
rtdt

⇔
∂V

∂t
dt+

∂V

∂At
dAt +

1
2σ(rt, t)

2 ∂
2V

∂r2t
dt− Vtrtdt

=
∂V/∂rt
∂F/∂rt

µ
∂F

∂t
+ 1

2σ(rt, t)
2 ∂

2F

∂r2t
−Xtrt

¶
dt

⇔ ³
∂V
∂t +

1
2σ(rt, t)

2 ∂2V
∂r2t
− Vtr +

∂V
∂At

f(rt, t)
´

∂V/∂rt
dt

=

³
∂F
∂t +

1
2σ(rt, t)

2 ∂2F
∂r2t
−Xtrt

´
∂F/∂rt

dt
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As the securities were arbitrarily chosen, the equation cannot depend on them, hence
leaving the right hand side equal to some function g(rt, t) depending only on time and the
short rate. A standard trick is to write this as a function of the drift and the volatility
for some function λ(rt, t) which is denoted market price of risk. Define λ (rt, t) such that
g(rt, t) = − (µ(rt, t)− λ(rt, t)σ(rt.t)), leading to

g(rt, t) =

³
∂V
∂t +

1
2σ(rt, t)

2 ∂2V
∂r2t
− Vtr +

∂V
∂At

f(rt, t)
´

∂V/∂rt⇔
0 =

∂V

∂t
+ 1

2σ(rt, t)
2 ∂

2V

∂r2t
− Vtrt +

∂V

∂At
f(rt, t)− g(rt, t)

∂V

∂rt⇔
rtVt =

∂V

∂t
+ 1

2σ(rt, t)
2 ∂

2V

∂r2t
+

∂V

∂At
f(rt, t) + (µ(rt, t)− λ(rt, t)σ(rt, t))

∂V

∂rt
.

A.2 The Finite Difference Schemes

We will use the ”delta” method in order facilitate shifts between various finite difference
schemes, thus letting

∂

∂t
u (xs, tn) =

un+1s − uns
δnt

+O (δnt ) ,

∂

∂x
u (xs, tn) = ω1

uns+1 − uns−1
2δx

+ (1− ω1)
un+1s+1 − un+1s−1

2δx
+O

³
(δx)

2
´
,

∂2

∂2x
u (xs, tn) = ω1

uns+1 − 2uns + uns−1
(δx)

2 + (1− ω1)
un+1s+1 − 2un+1s + un+1s−1

(δx)
2 +O

³
(δx)

2
´
.

Notice, that setting ω1 equal to 1 corresponds to a pure implicit scheme, 0 to a pure
explicit scheme and ω1 equal to 1

2 is the Crank-Nicolson scheme. To simplify the notation
let

β (x, t) = 1
2σ

2π2x4,

α (x, t) = πx2
¡
σ2πx− µ̃

¢
,

γ (t) =
δnt

(δx)
2 ,

ω2 = 1− ω1.

Substituting the finite difference approximations into the PDE (5) and simplifying, we
get the following equation for an inner point (n, s) of the grid

−ω1lns uns−1 + (1 + ω1δ
n
t r(xs)− ω1m

n
s )u

n
s − ω1h

n
su

n
s+1

= ω2l
n
s u

n+1
s−1 + (1− ω2δ

n
t r(xs) + ω2m

n
s )u

n+1
s + ω2h

n
su

n+1
s+1 ,

where

mn
s = −2γβ,
lns = γ

¡
β − 1

2αδx
¢
,

hns = γ
¡
β + 1

2αδx
¢
.

For the two boundary equations we will use implied boundary conditions, but we will
not be able to use a central derivative to approximate uxx and ux. Furthermore, as we
do not wish to spoil the second order of the Crank-Nicholson scheme, by using a simple
one sided difference approximation, which is only accurate to order O (δx). Instead we
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will use the following one sided approximations when x is at the boundaries, as they are
accurate of order O

³
(δx)

2
´
. On the upper boundary xS+1

∂

∂x
u (xS+1, tn) = ω1

unS−1 − 4unS + 3unS+1
2δx

+ ω2
un+1S−1 − 4un+1S + 3un+1S+1

2δx
,

∂

∂x∂x
u (xS+1, tn) = ω1

unS−1 − 2unS + unS+1

(δx)
2 + ω2

un+1S−1 − 2un+1S + un+1S+1

(δx)
2 .

which lead to

−ω1γ
¡
β + 1

2αδx
¢
unS−1 + ω12γ (αδx + β)unS

+
¡
1 + ω1r(xS+1)δ

n
t − ω1α

3
2γδx − ω1βγ

¢
unS+1

= ω2γ
¡
β + 1

2αδx
¢
un+1S−1 − ω22γ (αδx + β)un+1S

+
¡
1− ω2r(xS+1)δ

n
t + ω2α

3
2γδx + ω2βγ

¢
un+1S+1.

Similar approximations on the lower boundary x0 lead to¡
1 + ω1r(x0)δ

n
t + ω1γ

¡
α 32δx − β

¢¢
un0

+ω12γ (β − αδx)u
n
1 − ω1γ

¡
β − α 12δx

¢
un2

=
¡
1− ω2r(x0)δ

n
t − ω2γ

¡
α 32δx − β

¢¢
un+10

−ω22γ (β − αδx)u
n+1
1 + ω2γ

¡
β − α12δx

¢
un+12 .

These equations can be expressed as follows. Notice, that the one sided, but second
order, approximations come with a (very) small price tag, namely that the system of
equations that we end up with, is not a truly tri-diagonal system.

B0 C0 D0 0
A1 B1 C1 0
0 A2 B2 C2

· · ·
AS−1 BS−1 CS−1 0
0 AS BS CS

0 ES+1 AS+1 BS+1





un0
un1
un2
...

unS−1
unS
unS+1


= rh

¡
un+1

¢
,

rh
¡
un+1

¢
=



b0 c0 d0 0
a1 b1 c1 0
0 a2 b2 c2

· · ·
aS−1 bS−1 cS−1 0
0 aS bS cS
0 eS+1 aS+1 bS+1





un+10

un+11

un+12
...

un+1S−1
un+1S

un+1S+1


.

However, we will only need two additional row operations in order to obtain a true
tri-diagonal system. Then we can use standard routines to solve the system.

A.3 The Monte Carlo Setup

The simulation setup used in this paper is based on the excellent paper on efficient sim-
ulation in non-linear one-factor interest rate models by Andersen (1996). We apply the
extended version of the second order Milstein discretization scheme and the antithetic
variate technique for variance reduction. Admittedly, there are several techniques that
could possibly reduce the variance of the Monte Carlo estimates further.
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